skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Partial separability and functional graphical models for multivariate Gaussian processes
Summary The covariance structure of multivariate functional data can be highly complex, especially if the multivariate dimension is large, making extensions of statistical methods for standard multivariate data to the functional data setting challenging. For example, Gaussian graphical models have recently been extended to the setting of multivariate functional data by applying multivariate methods to the coefficients of truncated basis expansions. However, compared with multivariate data, a key difficulty is that the covariance operator is compact and thus not invertible. This paper addresses the general problem of covariance modelling for multivariate functional data, and functional Gaussian graphical models in particular. As a first step, a new notion of separability for the covariance operator of multivariate functional data is proposed, termed partial separability, leading to a novel Karhunen–Loève-type expansion for such data. Next, the partial separability structure is shown to be particularly useful in providing a well-defined functional Gaussian graphical model that can be identified with a sequence of finite-dimensional graphical models, each of identical fixed dimension. This motivates a simple and efficient estimation procedure through application of the joint graphical lasso. Empirical performance of the proposed method for graphical model estimation is assessed through simulation and analysis of functional brain connectivity during a motor task.  more » « less
Award ID(s):
2128589
PAR ID:
10366278
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Biometrika
Volume:
109
Issue:
3
ISSN:
0006-3444
Page Range / eLocation ID:
665 to 681
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary For multivariate spatial Gaussian process models, customary specifications of cross-covariance functions do not exploit relational inter-variable graphs to ensure process-level conditional independence between the variables. This is undesirable, especially in highly multivariate settings, where popular cross-covariance functions, such as multivariate Matérn functions, suffer from a curse of dimensionality as the numbers of parameters and floating-point operations scale up in quadratic and cubic order, respectively, with the number of variables. We propose a class of multivariate graphical Gaussian processes using a general construction called stitching that crafts cross-covariance functions from graphs and ensures process-level conditional independence between variables. For the Matérn family of functions, stitching yields a multivariate Gaussian process whose univariate components are Matérn Gaussian processes, and which conforms to process-level conditional independence as specified by the graphical model. For highly multivariate settings and decomposable graphical models, stitching offers massive computational gains and parameter dimension reduction. We demonstrate the utility of the graphical Matérn Gaussian process to jointly model highly multivariate spatial data using simulation examples and an application to air-pollution modelling. 
    more » « less
  2. Abstract Probabilistic graphical models have become an important unsupervised learning tool for detecting network structures for a variety of problems, including the estimation of functional neuronal connectivity from two‐photon calcium imaging data. However, in the context of calcium imaging, technological limitations only allow for partially overlapping layers of neurons in a brain region of interest to be jointly recorded. In this case, graph estimation for the full data requires inference for edge selection when many pairs of neurons have no simultaneous observations. This leads to the graph quilting problem, which seeks to estimate a graph in the presence of block‐missingness in the empirical covariance matrix. Solutions for the graph quilting problem have previously been studied for Gaussian graphical models; however, neural activity data from calcium imaging are often non‐Gaussian, thereby requiring a more flexible modelling approach. Thus, in our work, we study two approaches for nonparanormal graph quilting based on the Gaussian copula graphical model, namely, a maximum likelihood procedure and a low rank‐based framework. We provide theoretical guarantees on edge recovery for the former approach under similar conditions to those previously developed for the Gaussian setting, and we investigate the empirical performance of both methods using simulations as well as real data calcium imaging data. Our approaches yield more scientifically meaningful functional connectivity estimates compared to existing Gaussian graph quilting methods for this calcium imaging data set. 
    more » « less
  3. We propose a broad class of models for time series of curves (functions) that can be used to quantify near long‐range dependence or near unit root behavior. We establish fundamental properties of these models and rates of consistency for the sample mean function and the sample covariance operator. The latter plays a role analogous to sample cross‐covariances for multivariate time series, but is far more important in the functional setting because its eigenfunctions are used in principal component analysis, which is a major tool in functional data analysis. It is used for dimension reduction of feature extraction. We also establish a central limit theorem for functions following our model. Both the consistency rates and the normalizations in the Central Limit Theorem (CLT) are nonstandard. They reflect the local unit root behavior and the long memory structure at moderate lags. 
    more » « less
  4. Functional data have received significant attention as they frequently appear in modern applications, such as functional magnetic resonance imaging (fMRI) and natural language processing. The infinite-dimensional nature of functional data makes it necessary to use dimension reduction techniques. Most existing techniques, however, rely on the covariance operator, which can be affected by heavy-tailed data and unusual observations. Therefore, in this paper, we consider a robust sliced inverse regression for multivariate elliptical functional data. For that reason, we introduce a new statistical linear operator, called the conditional spatial sign Kendall’s tau covariance operator, which can be seen as an extension of the multivariate Kendall’s tau to both the conditional and functional settings. The new operator is robust to heavy-tailed data and outliers, and hence can provide a robust estimate of the sufficient predictors. We also derive the convergence rates of the proposed estimators for both completely and partially observed data. Finally, we demonstrate the finite sample performance of our estimator using simulation examples and a real dataset based on fMRI. 
    more » « less
  5. We introduce a novel framework for the classification of functional data supported on nonlinear, and possibly random, manifold domains. The motivating application is the identification of subjects with Alzheimer’s disease from their cortical surface geometry and associated cortical thickness map. The proposed model is based upon a reformulation of the classification problem as a regularized multivariate functional linear regression model. This allows us to adopt a direct approach to the estimation of the most discriminant direction while controlling for its complexity with appropriate differential regularization. Our approach does not require prior estimation of the covariance structure of the functional predictors, which is computationally prohibitive in our application setting. We provide a theoretical analysis of the out-of-sample prediction error of the proposed model and explore the finite sample performance in a simulation setting. We apply the proposed method to a pooled dataset from the Alzheimer’s Disease Neuroimaging Initiative and the Parkinson’s Progression Markers Initiative. Through this application, we identify discriminant directions that capture both cortical geometric and thickness predictive features of Alzheimer’s disease that are consistent with the existing neuroscience literature. 
    more » « less