skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2128617

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Volcanic eruptions and wildfires can impact stratospheric chemistry. We apply tracer‐tracer correlations to satellite data from Atmospheric Chemistry Experiment—Fourier Transform Spectrometer and the Halogen Occultation Experiment at 68 hPa to consistently compare the chemical impact on HCl after multiple wildfires and volcanic eruptions of different magnitudes. The 2020 Australian New Year (ANY) fire displayed an order of magnitude less stratospheric aerosol extinction than the 1991 Pinatubo eruption, but showed similar large changes in mid‐latitude lower stratosphere HCl. While the mid‐latitude aerosol loadings from the 2015 Calbuco and 2022 Hunga volcanic eruptions were similar to the ANY fire, little impact on HCl occurred. The 2009 Australian Black Saturday fire and 2021 smoke remaining from 2020 yield small HCl changes, at the edge of the detection method. These observed contrasts across events highlight greater reactivity for smoke versus volcanic aerosols at warm temperatures. 
    more » « less
  2. Abstract Observationally-derived emissions of ozone depleting substances must be scrutinized to maintain the progress made by the Montreal Protocol in protecting the stratospheric ozone layer. Recent observations of three chlorofluorocarbons (CFCs), CFC-113, CFC-114, and CFC-115, suggest that emissions of these compounds have not decreased as expected given global reporting of their production. These emissions have been associated with hydrofluorocarbon (HFC) production, which can require CFCs as feedstocks or generate CFCs as by-products, yet emissions from these pathways have not been rigorously quantified. Here, we develop a Bayesian framework to jointly infer emissions of CFC-113, CFC-114, and CFC-115 during HFC-134a and HFC-125 production. We estimate that feedstock emissions from HFC-134a production accounted for 90% (82–94%) and 65% (47–77%) of CFC-113 and CFC-114 emissions, respectively, from 2015–2019, while by-product emissions during HFC-125 production accounted for 81% (68–92%) of CFC-115 emissions. Our results suggest that unreported feedstock production in low- to middle-income countries may explain the unexpected emissions of CFC-113 and CFC-114, although uncertainties within chemical manufacturing processes call for further investigation and industry transparency. This work motivates tightened feedstock regulations and adds a reduction in CFC emissions to the benefits of the HFC phasedowns scheduled by the Kigali Amendment. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Abstract Hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are potent greenhouse gases regulated under the Montreal Protocol and its amendments. Emission estimates generally use constant atmospheric lifetimes accounting for loss via hydroxyl radical (OH) reactions. However, chemistry‐climate models suggest OH increases after 1980, implying underestimated emissions. Further, HCFCs and HFCs are soluble in seawater and could be destroyed through in situ oceanic microbial activity. These ocean sinks are largely overlooked. Using a coupled atmosphere‐ocean model, we show that increases in modeled OH imply underestimated HCFC and HFC emissions by ∼10% near their respective peak emissions. Our model results also suggest that oceanic processes could lead to up to an additional 10% underestimation in these halocarbon emissions in the 2020s. Ensuring global compliance to the Protocol and accurate knowledge of contributions to global warming from these gases therefore requires understanding of these processes. 
    more » « less
  4. Abstract Open questions about the modulation of near‐surface trace gas variability by stratosphere‐troposphere tracer transport complicate efforts to identify anthropogenic sources of gases such as CFC‐11 and N2O and disentangle them from dynamical influences. In this study, we explore one model's modulation of lower stratospheric tracer advection by the quasi‐biennial oscillation (QBO) of stratospheric equatorial zonal‐mean zonal winds at 50 hPa. We assess instances of coherent modulation versus disruption through phase unlocking with the seasonal cycle in the model and in observations. We quantify modeled advective contributions to the temporal rate of change of stratospheric CFC‐11 and N2O at extratropical and high‐latitudes by calculating a transformed Eulerian mean (TEM) budget across isentropic surfaces from a 10‐member WACCM4 ensemble simulation. We find that positive interannual variability in seasonal tracer advection generally occurs in the easterly QBO phase, as in previous work, and briefly discuss physical mechanisms. Individual simulations of the 10‐member ensemble display phase‐unlocking disruptions from this general pattern due to seasonally varying synchronizations between the model's repeating 28‐month QBO cycle and the 12‐month seasonal cycle. We find that phase locking and unlocking patterns of tracer advection calculations inferred from observations fall within the envelope of the ensemble member results. Our study bolsters evidence for variability in the interannual stratospheric dynamical influence of CFC‐11 near‐surface concentrations by assessing the QBO modulation of lower stratospheric advection via synchronization with the annual cycle. It identifies a likely cause of variations in the QBO influence on tropospheric abundances. 
    more » « less
  5. The Antarctic ozone “hole” was discovered in 1985, and man-made ozone- depleting substances (ODS) are its primary cause. Following reductions of ODSs under the Montreal Protocol, signs of ozone recovery have been reported, based largely on observations and broad yet compelling model-data comparisons. While such approaches are highly valuable, they don't provide rigorous statistical detection of the temporal and spatial structure of Antarctic ozone recovery in the presence of internal climate variability. Here, we apply pattern-based detection and attribution methods as employed in climate change studies to separate anthropogenically forced ozone responses from internal variability, relying on trend pattern information as a function of month and height. The analysis uses satellite observations together with single-model and multi-model ensemble simulations to identify and quantify the month-height Antarctic ozone recovery “fingerprint”. We demonstrate that the data and simulations show remarkable agreement in the fingerprint pattern of the ozone response to decreasing ODSs since 2005. We also show that ODS forcing has enhanced ozone internal variability during the austral spring, influencing detection of forced responses and their time of emergence. Our results provide robust statistical and physical evidence that actions taken under the Montreal Protocol to reduce ODSs are indeed resulting in the beginning of Antarctic ozone recovery, defined as increases in ozone consistent with expected month-height patterns. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026
  6. Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted. 
    more » « less
  7. The international scientific assessment of ozone depletion is prepared every 4 years to support decisions made by the parties to the Montreal Protocol. In each assessment an outlook of ozone recovery time is provided. The year when equivalent effective stratospheric chlorine (EESC) returns to the level found in 1980 is an important metric for the recovery of the ozone layer. Over the past five assessments, the expected date for the return of EESC to the 1980 level, for mid-latitudes, was delayed, from the year 2049 in the 2006 assessment to 2066 in the 2022 assessment, which represents a delay of 17 years over a 16-year assessment period. Here, we quantify the primary drivers that have delayed the expected EESC recovery date between each of these assessments. We find that by using identical EESC formulations, the delay between the 2006 and 2022 assessments' expected return of EESC to 1980 levels is shortened to 12.6 years. Of this delay, bank calculation methods account for ∼ 4 years, changes in the assumed atmospheric lifetime for certain ozone-depleting substances (ODSs) account for ∼ 3.5 years, an underestimate of the emission of carbon tetrachloride accounts for ∼ 3 years, and updated historical mole fraction estimates of ODSs account for ∼ 1 year. Since some of the underlying causes of these delays are amenable to future controls (e.g., capture of ODSs from banks and limitations on future feedstock emissions), it is important to understand the reasons for the delays in the expected recovery date of stratospheric halogens. 
    more » « less
  8. Abstract. Halocarbons contained in equipment such as air conditioners, fireextinguishers, and foams continue to be emitted after production has ceased. These “banks” within equipment and applications are thus potential sources of future emissions, and must be carefully accounted for in order to differentiate nascent and potentially illegal production from legal banked emissions. Here, we build on a probabilistic Bayesian model, previously developed to quantify chlorofluorocarbon (CFC-11, CFC-12, and CFC-113) banks and their emissions. We extend this model to a suite of banked chemicals regulated under the Montreal Protocol (hydrochlorofluorocarbon, HCFC-22, HCFC-141b, and HCFC-142b, halon 1211 and halon 1301, and CFC-114 and CFC-115) along with CFC-11, CFC-12, and CFC-113 in order to quantify a fuller range of ozone-depleting substance (ODS) banks by chemical and equipment type. We show that if atmospheric lifetime and prior assumptions are accurate, banks are most likely larger than previous international assessments suggest, and that total production has probably been higher than reported. We identify that banks of greatest climate-relevance, as determined by global warming potential weighting, are largely concentrated in CFC-11 foams and CFC-12 and HCFC-22 non-hermetic refrigeration. Halons, CFC-11, and CFC-12 banks dominate the banks weighted by ozone depletion potential (ODP). Thus, we identify and quantify the uncertainties in substantial banks whose future emissions will contribute to future global warming and delay ozone-hole recovery if left unrecovered. 
    more » « less