Abstract Observationally-derived emissions of ozone depleting substances must be scrutinized to maintain the progress made by the Montreal Protocol in protecting the stratospheric ozone layer. Recent observations of three chlorofluorocarbons (CFCs), CFC-113, CFC-114, and CFC-115, suggest that emissions of these compounds have not decreased as expected given global reporting of their production. These emissions have been associated with hydrofluorocarbon (HFC) production, which can require CFCs as feedstocks or generate CFCs as by-products, yet emissions from these pathways have not been rigorously quantified. Here, we develop a Bayesian framework to jointly infer emissions of CFC-113, CFC-114, and CFC-115 during HFC-134a and HFC-125 production. We estimate that feedstock emissions from HFC-134a production accounted for 90% (82–94%) and 65% (47–77%) of CFC-113 and CFC-114 emissions, respectively, from 2015–2019, while by-product emissions during HFC-125 production accounted for 81% (68–92%) of CFC-115 emissions. Our results suggest that unreported feedstock production in low- to middle-income countries may explain the unexpected emissions of CFC-113 and CFC-114, although uncertainties within chemical manufacturing processes call for further investigation and industry transparency. This work motivates tightened feedstock regulations and adds a reduction in CFC emissions to the benefits of the HFC phasedowns scheduled by the Kigali Amendment.
more »
« less
Bayesian assessment of chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC) and halon banks suggest large reservoirs still present in old equipment
Abstract. Halocarbons contained in equipment such as air conditioners, fireextinguishers, and foams continue to be emitted after production has ceased. These “banks” within equipment and applications are thus potential sources of future emissions, and must be carefully accounted for in order to differentiate nascent and potentially illegal production from legal banked emissions. Here, we build on a probabilistic Bayesian model, previously developed to quantify chlorofluorocarbon (CFC-11, CFC-12, and CFC-113) banks and their emissions. We extend this model to a suite of banked chemicals regulated under the Montreal Protocol (hydrochlorofluorocarbon, HCFC-22, HCFC-141b, and HCFC-142b, halon 1211 and halon 1301, and CFC-114 and CFC-115) along with CFC-11, CFC-12, and CFC-113 in order to quantify a fuller range of ozone-depleting substance (ODS) banks by chemical and equipment type. We show that if atmospheric lifetime and prior assumptions are accurate, banks are most likely larger than previous international assessments suggest, and that total production has probably been higher than reported. We identify that banks of greatest climate-relevance, as determined by global warming potential weighting, are largely concentrated in CFC-11 foams and CFC-12 and HCFC-22 non-hermetic refrigeration. Halons, CFC-11, and CFC-12 banks dominate the banks weighted by ozone depletion potential (ODP). Thus, we identify and quantify the uncertainties in substantial banks whose future emissions will contribute to future global warming and delay ozone-hole recovery if left unrecovered.
more »
« less
- Award ID(s):
- 2128617
- PAR ID:
- 10437736
- Date Published:
- Journal Name:
- Atmospheric Chemistry and Physics
- Volume:
- 22
- Issue:
- 17
- ISSN:
- 1680-7324
- Page Range / eLocation ID:
- 11125 to 11136
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The ocean is a reservoir for CFC-11, a major ozone-depleting chemical. Anthropogenic production of CFC-11 dramatically decreased in the 1990s under the Montreal Protocol, which stipulated a global phase out of production by 2010. However, studies raise questions about current overall emission levels and indicate unexpected increases of CFC-11 emissions of about 10 Gg ⋅ yr −1 after 2013 (based upon measured atmospheric concentrations and an assumed atmospheric lifetime). These findings heighten the need to understand processes that could affect the CFC-11 lifetime, including ocean fluxes. We evaluate how ocean uptake and release through 2300 affects CFC-11 lifetimes, emission estimates, and the long-term return of CFC-11 from the ocean reservoir. We show that ocean uptake yields a shorter total lifetime and larger inferred emission of atmospheric CFC-11 from 1930 to 2075 compared to estimates using only atmospheric processes. Ocean flux changes over time result in small but not completely negligible effects on the calculated unexpected emissions change (decreasing it by 0.4 ± 0.3 Gg ⋅ yr −1 ). Moreover, it is expected that the ocean will eventually become a source of CFC-11, increasing its total lifetime thereafter. Ocean outgassing should produce detectable increases in global atmospheric CFC-11 abundances by the mid-2100s, with emission of around 0.5 Gg ⋅ yr −1 ; this should not be confused with illicit production at that time. An illustrative model projection suggests that climate change is expected to make the ocean a weaker reservoir for CFC-11, advancing the detectable change in the global atmospheric mixing ratio by about 5 yr.more » « less
-
In this perspective on the future of the Arctic, we explore actions taken to mitigate warming and adapt to change since the Paris agreement on the temperature threshold that should not be exceeded in order to avoid dangerous interference with the climate system. Although 5 years may seem too short a time for implementation of major interventions, it actually is a considerable time span given the urgency at which we must act if we want to avoid crossing the 1.5 to <2 °C global warming threshold. Actions required include co-production of research exploring possible futures; supporting Indigenous rights holders’ and stakeholders’ discourse on desired futures; monitoring Arctic change; funding strategic, regional adaptation; and, deep decarbonization through transformation of the energy system coupled with negative carbon emissions. We are now in the decisive decade concerning the future we leave behind for the next generations. The Arctic’s future depends on global action, and in turn, the Arctic plays a critical role in the global future.more » « less
-
Abstract Radiation changes at the Earth's surface alter climate, however, the causes of observed surface radiation changes are not precisely quantified globally. With complete global coverage by ERA‐Interim, the drivers of the clear sky surface downwelling longwave irradiance (SDLI) trends from 1984 to 2017 are quantifiable everywhere. Trends in atmospheric temperature and water vapor contributed significantly (∼90%) to clear sky SDLI trends, including trends consistent with Arctic warming and Southern Ocean cooling. CO2contributed ∼10% and other greenhouse gases (CH4, N2O, CFC‐11, and CFC‐12) ∼1% to the SDLI trends. These observation‐based results are consistent with early CO2‐doubling climate model calculations wherein temperature and water vapor changes drove ∼90% of the SDLI change. The well‐mixed greenhouse gases drive location‐dependent SDLI trends that are strongest over regions with climatologically high temperatures and low water vapor amounts.more » « less
-
Abstract Freshwater ecosystem contributions to the global methane budget remains the most uncertain among natural sources. With warming and accompanying carbon release from thawed permafrost and thermokarst lake expansion, the increase of methane emissions could be large. However, the impact and relative importance of various factors related to warming remain uncertain. Based on diverse lake characteristics incorporated in modeling and observational data, we calibrate and verify a lake biogeochemistry model. The model is then applied to estimate global lake methane emissions and examine the impacts of temperature increase for the first and the last decades of the 21st century under different climate scenarios. We find that current emissions are 24.0 ± 8.4 Tg CH4 yr−1from lakes larger than 0.1 km2, accounting for 11% of the global total natural source as estimated based on atmospheric inversion. Future projections under the RCP8.5 scenario suggest a 58%–86% growth in emissions from lakes. Our model sensitivity analysis indicates that additional carbon substrates from thawing permafrost may enhance methane production under warming in the Arctic. Warming enhanced methane oxidation in lake water can be an effective sink to reduce the net release from global lakes.more » « less
An official website of the United States government

