- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aoki, E. (2)
-
Thompson, C. (2)
-
Tran, B. (2)
-
Chandra, K. (1)
-
Sastry, S. (1)
-
Tran, V. (1)
-
Tripathy, S. (1)
-
Tripathy, S.T. (1)
-
Uhunsere, N. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Augmented Reality (AR) devices offer novel capabilities that can be exploited in AR systems to positively impact human-machine interactions in a variety of future-work and education contexts. This paper presents a systems model for a no-code AR systems framework that can be used to create AR applications that present just-in-time informatics to assist and guide users in the completion of complex task sequences while ensuring operator and environment safety. The salient structural and behavioral aspects of the system, and key use cases are modeled using the Systems Modeling Language (SysML). Representative examples of the model are presented using use case, block definition, internal block, activity, and state-machine diagrams. These models offer new insights into how AR capabilities can be integrated with a variety of engineered systems. In the future such SysML models can steer the design of new tools and an ontology to strengthen connections to domain knowledge.more » « less
-
Aoki, E.; Tran, B.; Uhunsere, N.; Tripathy, S.T.; Thompson, C.; Sastry, S. (, ASEE annual conference exposition)Recent advances in Augmented Reality (AR) devices and their maturity as a technology offers new modalities for interaction between learners and their learning environments. Such capabilities are particularly important for learning that involves hands-on activities where there is a compelling need to: (a) make connections between knowledge-elements that have been taught at different times, (b) apply principles and theoretical knowledge in a concrete experimental setting, (c) understand the limitations of what can be studied via models and via experiments, (d) cope with increasing shortages in teaching-support staff and instructional material at the intersection of disciplines, and (e) improve student engagement in their learning. AR devices that are integrated into training and education systems can be effectively used to deliver just-in-time informatics to augment physical workspaces and learning environments with virtual artifacts. We present a system that demonstrates a solution to a critical registration problem and enables a multi-disciplinary team to develop the pedagogical content without the need for extensive coding. The most popular approach for developing AR applications is to develop a game using a standard game engine such as UNITY or UNREAL. These engines offer a powerful environment for developing a large variety of games and an exhaustive library of digital assets. In contrast, the framework we offer supports a limited range of human environment interactions that are suitable and effective for training and education. Our system offers four important capabilities – annotation, navigation, guidance, and operator safety. These capabilities are presented and described in detail. The above framework motivates a change of focus – from game development to AR content development. While game development is an intensive activity that involves extensive programming, AR content development is a multi-disciplinary activity that requires contributions from a large team of graphics designers, content creators, domain experts, pedagogy experts, and learning evaluators. We have demonstrated that such a multi-disciplinary team of experts working with our framework can use popular content creation tools to design and develop the virtual artifacts required for the AR system. These artifacts can be archived in a standard relational database and hosted on robust cloud-based backend systems for scale up. The AR content creators can own their content and Non-fungible Tokens to sequence the presentations either to improve pedagogical novelty or to personalize the learning.more » « less
An official website of the United States government

Full Text Available