skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2129221

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract One-second U.S. high vertical-resolution radiosonde data (HVRRD) contain two different sets of temperature data—the raw data and the processed data. The processed data have been subject to radiation corrections, which have been well documented, and smoothing, the details of which are proprietary to the radiosonde manufacturers. We have tried to characterize this smoothing by computing the root-mean-square (rms) of normalized temperature perturbations derived from removing a second-degree polynomial fit for altitude segments (Δz) from 100 m to 5 km. We find that for Δz= 100 m, rms values are larger at higher altitudes, are larger in the raw data than in the processed data, and are larger during daytime than during nighttime, for both the raw and processed data. The rms values and their daytime to nighttime differences are larger in the raw data than in the processed data. As Δzincreases toward 5 km, the geographical patterns of rms over the contiguous United States from both the raw and processed data start resembling previously published gravity wave total energy patterns obtained from the older 6-s U.S. radiosonde data. An example is shown of a discontinuity in the small-scale rms values when radiosonde instrumentation is changed, so it is concluded that small-scale temperature fluctuations will be different for different radiosonde instruments. Examples are shown of enhanced small-scale rms temperature values indicative of turbulence resulting from gravity wave critical levels and from enhanced gravity waves due to seasonal maxima in convection. Significance StatementWe have characterized the variability of the raw and processed temperature profiles of the U.S. high vertical resolution radiosonde data for various vertical scales. We have argued that sources of small-scale fluctuations in the processed data include turbulence and the radiation effects which have not been accounted for in the current derivation of the processed data. Temperature fluctuations of larger scales correspond to those from gravity waves. We have shown an example of a discontinuity in small-scale fluctuations at a radiosonde station when the instrumentation was changed. These results suggest that temperature fluctuations resulting from varying amounts of solar radiation falling on the temperature sensor as the radiosonde instrumentation swings and rotates should be evaluated for each radiosonde system. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract In a previous paper, we identified a “notch” in unstable layers at Koror (7.3°N, 134.5°E), where there was a relative deficiency in thin unstable layers and a corresponding relative excess in thicker layers, at altitudes centered at 12 km. We hypothesized that this feature was associated with the previously identified stability minimum in the tropics at that same altitude. In this paper, we extend our studies of this notch and its association with the tropical stability minimum by examining other stations in the deep tropics and also some stations at higher latitudes within the tropics. We find that this notch feature is found at all the other radiosonde stations in the deep tropics that we examined. We also find that the annual variations in unstable layer occurrences at stations at higher latitudes within the tropics show variations consistent with our hypothesis that this notch is associated with the region of minimum stability in the tropics at altitudes centered around 12 km, in that the annual variation in this notch feature is consistent with the annual variation of minimum stability in this region. Two factors contribute to the notch feature. One is that the data quality control procedure of the analysis rejects many thin layers due to the small trend-to-noise ratio in the region of minimum stability. The other is that the cloud-top outflow, which was previously identified with the stability minimum, advects thicker unstable layers throughout the deep tropics at the altitudes of the notch. Significance StatementPrevious papers have separately identified a stability minimum in the tropics and a “notch” feature in the thicknesses of unstable atmospheric layers where there are less thin unstable layers and a corresponding excess of thicker unstable layers, both at altitudes around 12 km. We previously hypothesized that these two features were associated with one another. In this paper, we examine this notch feature and the minimum in atmospheric stability at both deep tropical radiosonde stations and stations located at higher latitudes in the tropics, and we find that the annual variation of this notch feature is consistent with the latitudinal migration of the latitudes of the stability minimum. Turbulence associated with this notch feature might be significant for aircraft operations. 
    more » « less
  3. Abstract We have published a recent paper on differences between temperature fluctuations of various vertical scales in raw and processed U.S. high vertical resolution radiosonde data (HVRRD). In that paper, we note that the small-scale temperature fluctuations in the raw U.S. HVRRD are significantly larger than those in the processed U.S. HVRRD and that those small-scale temperature fluctuations are much larger during daytime that during nighttime. We believe that this is due to the varying amount of solar radiation falling on the radiosonde temperature sensor as the radiosonde instrument swings and rotates. In light of these new results, we present revisions to some of our conclusions about the climatology of atmospheric unstable layers. When we repeat our calculations of atmospheric unstable layers using the processed U.S. HVRRD, we find the following. 1) The 0000/1200 UTC differences in unstable layer occurrences in the lower stratosphere that were noted in our earlier paper essentially disappear. 2) The “notch” in the deep tropics where there is a relative deficiency of thin unstable layers and a corresponding excess of thicker layers is still a feature when processed data are analyzed, but the daytime notch is less marked when the processed data were used. 3) The discontinuity in unstable layer occurrences, when there was a change in radiosonde instrumentation, is still present when processed data are analyzed, but is diminished from what it was when the raw data were analyzed. Significance StatementIn a previous paper deriving the climatology of atmospheric unstable layers, we emphasized several findings. We reexamine three of the main points of that paper when processed U.S. high vertical resolution radiosonde data are analyzed instead of the raw data used in that previous paper. We find the 0000/1200 UTC differences virtually disappear in the new analysis. We find that the “notch” feature previously noted at Koror still exists, and we find that the discontinuity in unstable layers, when radiosonde instrumentation is changed, is diminished, but is still present in the new analysis. 
    more » « less
  4. Abstract Atmospheric turbulence plays a key role in the mixing of trace gases and diffusion of heat and momentum, as well as in aircraft operations. Although numerous observational turbulence studies have been conducted using campaign experiments and operational data, understanding the turbulence characteristics particularly in the free atmosphere remains challenging due to its small-scale, intermittent, and sporadic nature, along with limited observational data. To address this, turbulence in the free atmosphere is estimated herein based on the Thorpe method by using operational high vertical-resolution radiosonde data (HVRRD) with vertical resolutions of about 5 or 10 m across near-global regions, provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) via the U.S. National Centers for Environmental Information (NCEI) for 6 years (October 2017–September 2023). Globally, turbulence is stronger in the troposphere than in the stratosphere, with maximum turbulence occurring about 6 km below the tropopause, followed by a sharp decrease above. Seasonal variations show strong tropospheric turbulence in summer and weak turbulence in winter for both hemispheres, while the stratosphere exhibits strong turbulence during spring. Regional analyses identify strong turbulence regions over the South Pacific and South Africa in the troposphere and over East Asia and South Africa in the stratosphere. Notably, turbulence information can be provided in regions and high altitudes that are not covered by commercial aircraft, suggesting its potential utility for both present and future high-altitude aircraft operations. 
    more » « less
  5. Abstract A companion paper by Fritts et al. reviews extensive evidence for Kelvin–Helmholtz instability (KHI) “tube” and “knot” (T&K) dynamics at multiple altitudes in the atmosphere and in the oceans that reveal these dynamics to be widespread. A second companion paper by Fritts and Wang reveals KHI T&K events at larger and smaller scales to arise on multiple highly stratified sheets in a direct numerical simulation (DNS) of idealized, multiscale gravity wave–fine structure interactions. These studies reveal the diverse environments in which KHI T&K dynamics arise and suggest their potentially ubiquitous occurrence throughout the atmosphere and oceans. This paper describes a DNS of multiple KHI evolutions in wide and narrow domains enabling and excluding T&K dynamics. These DNSs employ common initial conditions but are performed for decreasing Reynolds numbers (Re) to explore whether T&K dynamics enable enhanced KHI-induced turbulence where it would be weaker or not otherwise occur. The major results are that KHI T&K dynamics extend elevated turbulence intensities and energy dissipation ratesεto smaller Re. We expect these results to have important implications for improving parameterizations of KHI-induced turbulence in the atmosphere and oceans. Significance StatementTurbulence due to small-scale shear flows plays important roles in the structure and variability of the atmosphere and oceans extending to large spatial and temporal scales. New modeling reveals that enhanced turbulence accompanies Kelvin–Helmholtz instabilities (KHIs) that arise on unstable shear layers and exhibit what were initially described as “tubes” and “knots” (T&K) when they were first observed in early laboratory experiments. We perform new modeling to explore two further aspects of these dynamics: 1) can KHI T&K dynamics increase turbulence intensities compared to KHI without T&K dynamics for the same initial fields and 2) can KHI T&K dynamics enable elevated turbulence and energy dissipation extending to more viscous flows? We show here that the answer to both questions is yes. 
    more » « less