skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2129445

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A framework to assess the fracture fragility of partial joint penetration (PJP) welded column splices in steel moment frames constructed before the 1994 Northridge earthquake is presented. These pre-Northridge splices feature low flange penetration of the PJP welds, and low-toughness weld materials, such that they are considered susceptible to fracture with possible catastrophic consequences. Estimating their fracture risk is especially important, given that retrofitting them is highly disruptive to building operations. The presented framework addresses shortcomings of previous research and performance assessment guidance that does not consider key mechanistic or statistical effects. To accomplish this, three-dimensional fracture mechanics finite-element simulations are conducted to assess fracture toughness demands. These demands are then interpreted through a master curve–based approach that rigorously considers spatial randomness and weakest-link sampling of weld toughness properties, along with the uncertainty in estimation of these properties. The framework is implemented in a tool which automates the entire process, facilitating application in a professional setting. The tool (and the underlying framework) is demonstrated on a range of splice configurations to examine the effects of configuration, loading, and material parameters. Limitations are outlined. 
    more » « less