skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fracture Mechanics–Based Fragility Assessment of Pre-Northridge Welded Column Splices
A framework to assess the fracture fragility of partial joint penetration (PJP) welded column splices in steel moment frames constructed before the 1994 Northridge earthquake is presented. These pre-Northridge splices feature low flange penetration of the PJP welds, and low-toughness weld materials, such that they are considered susceptible to fracture with possible catastrophic consequences. Estimating their fracture risk is especially important, given that retrofitting them is highly disruptive to building operations. The presented framework addresses shortcomings of previous research and performance assessment guidance that does not consider key mechanistic or statistical effects. To accomplish this, three-dimensional fracture mechanics finite-element simulations are conducted to assess fracture toughness demands. These demands are then interpreted through a master curve–based approach that rigorously considers spatial randomness and weakest-link sampling of weld toughness properties, along with the uncertainty in estimation of these properties. The framework is implemented in a tool which automates the entire process, facilitating application in a professional setting. The tool (and the underlying framework) is demonstrated on a range of splice configurations to examine the effects of configuration, loading, and material parameters. Limitations are outlined.  more » « less
Award ID(s):
2129445
PAR ID:
10471541
Author(s) / Creator(s):
;
Publisher / Repository:
American Society of Civil Engineers
Date Published:
Journal Name:
Journal of Structural Engineering
Volume:
149
Issue:
6
ISSN:
0733-9445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Approximation frameworks for phase-field models of brittle fracture are presented and compared in this work. Such methods aim to address the computational cost associated with conducting full-scale simulations of brittle fracture in heterogeneous materials where material parameters, such as fracture toughness, can vary spatially. They proceed by combining a dimension reduction with learning between function spaces. Two classes of approximations are considered. In the first class, deep learning models are used to perform regression in ad hoc latent spaces. PCA-Net and Fourier neural operators are specifically presented for the sake of comparison. In the second class of techniques, statistical sampling is used to approximate the forward map in latent space, using conditioning. To ensure proper measure concentration, a reduced-order Hamiltonian Monte Carlo technique (namely, probabilistic learning on manifold) is employed. The accuracy of these methods is then investigated on a proxy application where the fracture toughness is modeled as a non-Gaussian random field. It is shown that the probabilistic framework achieves comparable performance in the 𝐿2 sense while enabling the end-user to bypass the art of defining and training deep learning models. 
    more » « less
  2. It is now a well-established fact that even simple topology variations can drastically change the fracture response of structures. With the objective of gaining quantitative insight into this phenomenon, this paper puts forth a density-based topology optimization framework for the fracture response of structures subjected to quasistatic mechanical loads. One of the two key features of the proposed framework is that it makes use of a complete phase-field fracture theory that has been recently shown capable of accurately describing the nucleation and propagation of brittle fracture in a wide range of nominally elastic materials under a wide range of loading conditions. The other key feature is that the framework is based on a multi-objective function that allows optimizing in a weighted manner: ( ) the initial stiffness of the structure, ( ) the first instance at which fracture nucleates, and ( ) the energy dissipated by fracture propagation once fracture nucleation has occurred. The focus is on the basic case of structures made of a single homogeneous material featuring an isotropic linear elastic behavior alongside an isotropic strength surface and toughness. Novel interpolation rules are proposed for each of these three types of material properties. As a first effort to gain quantitative insight, the framework is deployed to optimize the fracture response of 2D structures wherein the fracture is bound to nucleate in three different types of regions: within the bulk, from geometric singularities (pre-existing cracks and sharp corners), and from smooth parts of the boundary. The obtained optimized structures are shown to exhibit significantly enhanced fracture behaviors compared to those of structures that are optimized according to conventional stiffness maximization. Furthermore, the results serve to reveal a variety of strengthening and toughening mechanisms. These include the promotion of highly porous structures, the formation of tension-compression asymmetric regions, and the removal of cracks and sharp corners. The particular mechanism that is preferred by a given structure, not surprisingly, correlates directly to the elastic, strength, and toughness properties of the material that is made of. 
    more » « less
  3. Abstract When studying bone fragility diseases, it is difficult to identify which factors reduce bone’s resistance to fracture because these diseases alter bone at many length scales. Here, we investigate the contribution of nanoscale collagen behavior on macroscale toughness and microscale toughening mechanisms using a bovine heat-treatment fragility model. This model is assessed by developing an in situ toughness testing technique for synchrotron radiation micro-computed tomography to study the evolution of microscale crack growth in 3D. Low-dose imaging is employed with deep learning to denoise images while maintaining bone’s innate mechanical properties. We show that collagen damage significantly reduces macroscale toughness and post-yield properties. We also find that bone samples with a compromised collagen network have reduced amounts of crack deflection, the main microscale mechanism of fracture resistance. This research demonstrates that collagen damage at the nanoscale adversely affects bone’s toughening mechanisms at the microscale and reduces the overall toughness of bone. 
    more » « less
  4. GTAW welding with pulsed current has been misinterpreted in some of the classic literature and scientific articles. General conclusions are presented, stating that its use provides greater penetration compared to the use of constant current and that the simple pulsation of the current promotes beneficial metallurgical effects. Therefore, this manuscript presents a critical analysis of this topic and adopts the terminology of thermal pulsation for the situation where the weld undergoes sensitive effects, regarding grain orientation during solidification. For comparison purposes, an index called the form factor (ratio between the root width and the face width of the weld bead) is adopted. It is shown that the penetration of a welding with pulsed current can be worse than constant current depending on the formulation of the adopted procedure. Moreover, metallurgical effects on solidification, such as grain orientation breakage, only occur when there is adequate concatenation between the pulsation frequency and the welding speed. Finally, a thermal simulation of the process showed that the pulsation frequency limits the welding speed so that there is an overlap of the molten pool in each current pulse, and continuity of the bead is obtained at the root. For frequencies of 1 Hz and 2.5 Hz, the limit welding speed was 3.3 mm/s and 4.1 mm/s, respectively. 
    more » « less
  5. Abstract Fracture dictates the service limits of metallic structures. Damage tolerance of materials may be characterized by fracture toughness rigorously developed from fracture mechanics, or less rigorous yet more easily obtained impact toughness (or impact energy as a variant). Given the promise of high-entropy alloys (HEAs) in structural and damage-tolerance applications, we compiled a dataset of fracture toughness and impact toughness/energy from the literature till the end of the 2022 calendar year. The dataset is subdivided into three categories, i.e., fracture toughness, impact toughness, and impact energy, which contain 153, 14, and 78 distinct data records, respectively. On top of the alloy chemistry and measured fracture quantities, each data record also documents the factors influential to fracture. Examples are material-processing history, phase structures, grain sizes, uniaxial tensile properties, such as yield strength and elongation, and testing conditions. Data records with comparable conditions are graphically visualized by plots. The dataset is hosted in Materials Cloud, an open data repository. 
    more » « less