skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2129904

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We combined synchrotron-based near field infrared spectroscopy and atomic force microscopy to image the properties of ferroelastic domain walls in Sr3Sn2O7. Although frequency shifts at the walls are near the limit of our sensitivity, we can confirm semiconducting rather than metallic character and widths between 20 and 60 nm. The latter is significantly narrower than in other hybrid improper ferroelectrics like Ca3Ti2O7. We attribute this trend to the softer lattice in Sr3Sn2O7, which may enable the octahedral tilt and rotation order parameters to evolve more quickly across the wall without significantly increased strain. These findings are crucial for the understanding of phononic properties at interfaces and the development of domain wall-based devices. 
    more » « less
    Free, publicly-accessible full text available November 13, 2025
  2. Abstract Hafnia (HfO 2 ) is a promising material for emerging chip applications due to its high- κ dielectric behavior, suitability for negative capacitance heterostructures, scalable ferroelectricity, and silicon compatibility. The lattice dynamics along with phononic properties such as thermal conductivity, contraction, and heat capacity are under-explored, primarily due to the absence of high quality single crystals. Herein, we report the vibrational properties of a series of HfO 2 crystals stabilized with yttrium (chemical formula HfO 2 :  x Y, where x  = 20, 12, 11, 8, and 0%) and compare our findings with a symmetry analysis and lattice dynamics calculations. We untangle the effects of Y by testing our calculations against the measured Raman and infrared spectra of the cubic, antipolar orthorhombic, and monoclinic phases and then proceed to reveal the signature modes of polar orthorhombic hafnia. This work provides a spectroscopic fingerprint for several different phases of HfO 2 and paves the way for an analysis of mode contributions to high- κ dielectric and ferroelectric properties for chip technologies. 
    more » « less