skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2130666

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract MotivationThe scale and scope of comparative trait data are expanding at unprecedented rates, and recent advances in evolutionary modeling and simulation sometimes struggle to match this pace. Well-organized and flexible applications for conducting large-scale simulations of evolution hold promise in this context for understanding models and more so our ability to confidently estimate them with real trait data sampled from nature. ResultsWe introduce TraitTrainR, an R package designed to facilitate efficient, large-scale simulations under complex models of continuous trait evolution. TraitTrainR employs several output formats, supports popular trait data transformations, accommodates multi-trait evolution, and exhibits flexibility in defining input parameter space and model stacking. Moreover, TraitTrainR permits measurement error, allowing for investigation of its potential impacts on evolutionary inference. We envision a wealth of applications of TraitTrainR, and we demonstrate one such example by examining the problem of evolutionary model selection in three empirical phylogenetic case studies. Collectively, these demonstrations of applying TraitTrainR to explore problems in model selection underscores its utility and broader promise for addressing key questions, including those related to experimental design and statistical power, in comparative biology. Availability and implementationTraitTrainR is developed in R 4.4.0 and is freely available at https://github.com/radamsRHA/TraitTrainR/, which includes detailed documentation, quick-start guides, and a step-by-step tutorial. 
    more » « less
  2. Abstract Understanding the genetic basis of phenotypic variation is fundamental to biology. Here we introduce GAP, a novel machine learning framework for predicting binary phenotypes from gaps in multi-species sequence alignments. GAP employs a neural network to predict the presence or absence of phenotypes solely from alignment gaps, contrasting with existing tools that require additional and often inaccessible input data. GAP can be applied to three distinct problems: predicting phenotypes in species from known associated genomic regions, pinpointing positions within such regions that are important for predicting phenotypes, and extracting sets of candidate regions associated with phenotypes. We showcase the utility of GAP by exploiting the well-known association between the L-gulonolactone oxidase (Gulo) gene and vitamin C synthesis, demonstrating its perfect prediction accuracy in 34 vertebrates. This exceptional performance also applies more generally, with GAP achieving high accuracy and power on a large simulated dataset. Moreover, predictions of vitamin C synthesis in species with unknown status mirror their phylogenetic relationships, and positions with high predictive importance are consistent with those identified by previous studies. Last, a genome-wide application of GAP identifies many additional genes that may be associated with vitamin C synthesis, and analysis of these candidates uncovers functional enrichment for immunity, a widely recognized role of vitamin C. Hence, GAP represents a simple yet useful tool for predicting genotype–phenotype associations and addressing diverse evolutionary questions from data available in a broad range of study systems. 
    more » « less
  3. Abstract Just exactly which tree(s) should we assume when testing evolutionary hypotheses? This question has plagued comparative biologists for decades. Though all phylogenetic comparative methods require input trees, we seldom know with certainty whether even a perfectly estimated tree (if this is possible in practice) is appropriate for our studied traits. Yet, we also know that phylogenetic conflict is ubiquitous in modern comparative biology, and we are still learning about its dangers when testing evolutionary hypotheses. Here, we investigate the consequences of tree-trait mismatch for phylogenetic regression in the presence of gene tree–species tree conflict. Our simulation experiments reveal excessively high false positive rates for mismatched models with both small and large trees, simple and complex traits, and known and estimated phylogenies. In some cases, we find evidence of a directionality of error: assuming a species tree for traits that evolved according to a gene tree sometimes fares worse than the opposite. We also explored the impacts of tree choice using an expansive, cross-species gene expression dataset as an arguably “best-case” scenario in which one may have a better chance of matching tree with trait. Offering a potential path forward, we found promise in the application of a robust estimator as a potential, albeit imperfect, solution to some issues raised by tree mismatch. Collectively, our results emphasize the importance of careful study design for comparative methods, highlighting the need to fully appreciate the role of accurate and thoughtful phylogenetic modeling. 
    more » « less
  4. Abstract MotivationGene deletion is traditionally thought of as a nonadaptive process that removes functional redundancy from genomes, such that it generally receives less attention than duplication in evolutionary turnover studies. Yet, mounting evidence suggests that deletion may promote adaptation via the “less-is-more” evolutionary hypothesis, as it often targets genes harboring unique sequences, expression profiles, and molecular functions. Hence, predicting the relative prevalence of redundant and unique functions among genes targeted by deletion, as well as the parameters underlying their evolution, can shed light on the role of gene deletion in adaptation. ResultsHere, we present CLOUDe, a suite of machine learning methods for predicting evolutionary targets of gene deletion events from expression data. Specifically, CLOUDe models expression evolution as an Ornstein–Uhlenbeck process, and uses multi-layer neural network, extreme gradient boosting, random forest, and support vector machine architectures to predict whether deleted genes are “redundant” or “unique”, as well as several parameters underlying their evolution. We show that CLOUDe boasts high power and accuracy in differentiating between classes, and high accuracy and precision in estimating evolutionary parameters, with optimal performance achieved by its neural network architecture. Application of CLOUDe to empirical data from Drosophila suggests that deletion primarily targets genes with unique functions, with further analysis showing these functions to be enriched for protein deubiquitination. Thus, CLOUDe represents a key advance in learning about the role of gene deletion in functional evolution and adaptation. Availability and implementationCLOUDe is freely available on GitHub (https://github.com/anddssan/CLOUDe). 
    more » « less
  5. Abstract In recent years, advances in image processing and machine learning have fueled a paradigm shift in detecting genomic regions under natural selection. Early machine learning techniques employed population-genetic summary statistics as features, which focus on specific genomic patterns expected by adaptive and neutral processes. Though such engineered features are important when training data are limited, the ease at which simulated data can now be generated has led to the recent development of approaches that take in image representations of haplotype alignments and automatically extract important features using convolutional neural networks. Digital image processing methods termed α-molecules are a class of techniques for multiscale representation of objects that can extract a diverse set of features from images. One such α-molecule method, termed wavelet decomposition, lends greater control over high-frequency components of images. Another α-molecule method, termed curvelet decomposition, is an extension of the wavelet concept that considers events occurring along curves within images. We show that application of these α-molecule techniques to extract features from image representations of haplotype alignments yield high true positive rate and accuracy to detect hard and soft selective sweep signatures from genomic data with both linear and nonlinear machine learning classifiers. Moreover, we find that such models are easy to visualize and interpret, with performance rivaling those of contemporary deep learning approaches for detecting sweeps. 
    more » « less
  6. Abstract ObjectivesSince 2010, genome‐wide data from hundreds of ancient Native Americans have contributed to the understanding of Americas' prehistory. However, these samples have never been studied as a single dataset, and distinct relationships among themselves and with present‐day populations may have never come to light. Here, we reassess genomic diversity and population structure of 223 ancient Native Americans published between 2010 and 2019. Materials and MethodsThe genomic data from ancient Americas was merged with a worldwide reference panel of 278 present‐day genomes from the Simons Genome Diversity Project and then analyzed through ADMIXTURE,D‐statistics, PCA, t‐SNE, and UMAP. ResultsWe find largely similar population structures in ancient and present‐day Americas. However, the population structure of contemporary Native Americans, traced here to at least 10,000 years before present, is noticeably less diverse than their ancient counterparts, a possible outcome of the European contact. Additionally, in the past there were greater levels of population structure in North than in South America, except for ancient Brazil, which harbors comparatively high degrees of structure. Moreover, we find a component of genetic ancestry in the ancient dataset that is closely related to that of present‐day Oceanic populations but does not correspond to the previously reported Australasian signal. Lastly, we report an expansion of the Ancient Beringian ancestry, previously reported for only one sample. DiscussionOverall, our findings support a complex scenario for the settlement of the Americas, accommodating the occurrence of founder effects and the emergence of ancestral mixing events at the regional level. 
    more » « less
  7. Abstract Modern comparative biology owes much to phylogenetic regression. At its conception, this technique sparked a revolution that armed biologists with phylogenetic comparative methods (PCMs) for disentangling evolutionary correlations from those arising from hierarchical phylogenetic relationships. Over the past few decades, the phylogenetic regression framework has become a paradigm of modern comparative biology that has been widely embraced as a remedy for shared ancestry. However, recent evidence has shown doubt over the efficacy of phylogenetic regression, and PCMs more generally, with the suggestion that many of these methods fail to provide an adequate defense against unreplicated evolution—the primary justification for using them in the first place. Importantly, some of the most compelling examples of biological innovation in nature result from abrupt lineage-specific evolutionary shifts, which current regression models are largely ill equipped to deal with. Here we explore a solution to this problem by applying robust linear regression to comparative trait data. We formally introduce robust phylogenetic regression to the PCM toolkit with linear estimators that are less sensitive to model violations than the standard least-squares estimator, while still retaining high power to detect true trait associations. Our analyses also highlight an ingenuity of the original algorithm for phylogenetic regression based on independent contrasts, whereby robust estimators are particularly effective. Collectively, we find that robust estimators hold promise for improving tests of trait associations and offer a path forward in scenarios where classical approaches may fail. Our study joins recent arguments for increased vigilance against unreplicated evolution and a better understanding of evolutionary model performance in challenging—yet biologically important—settings. 
    more » « less
  8. Abstract SummaryThe growing availability of genomewide polymorphism data has fueled interest in detecting diverse selective processes affecting population diversity. However, no model-based approaches exist to jointly detect and distinguish the two complementary processes of balancing and positive selection. We extend the BalLeRMixB-statistic framework described in Cheng and DeGiorgio (2020) for detecting balancing selection and present BalLeRMix+, which implements five B statistic extensions based on mixture models to robustly identify both types of selection. BalLeRMix+ is implemented in Python and computes the composite likelihood ratios and associated model parameters for each genomic test position. Availability and implementationBalLeRMix+ is freely available at https://github.com/bioXiaoheng/BallerMixPlus. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  9. Kim, Yuseob (Ed.)
    Abstract Natural selection leaves a spatial pattern along the genome, with a haplotype distribution distortion near the selected locus that fades with distance. Evaluating the spatial signal of a population-genetic summary statistic across the genome allows for patterns of natural selection to be distinguished from neutrality. Considering the genomic spatial distribution of multiple summary statistics is expected to aid in uncovering subtle signatures of selection. In recent years, numerous methods have been devised that consider genomic spatial distributions across summary statistics, utilizing both classical machine learning and deep learning architectures. However, better predictions may be attainable by improving the way in which features are extracted from these summary statistics. We apply wavelet transform, multitaper spectral analysis, and S-transform to summary statistic arrays to achieve this goal. Each analysis method converts one-dimensional summary statistic arrays to two-dimensional images of spectral analysis, allowing simultaneous temporal and spectral assessment. We feed these images into convolutional neural networks and consider combining models using ensemble stacking. Our modeling framework achieves high accuracy and power across a diverse set of evolutionary settings, including population size changes and test sets of varying sweep strength, softness, and timing. A scan of central European whole-genome sequences recapitulated well-established sweep candidates and predicted novel cancer-associated genes as sweeps with high support. Given that this modeling framework is also robust to missing genomic segments, we believe that it will represent a welcome addition to the population-genomic toolkit for learning about adaptive processes from genomic data. 
    more » « less