Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The robustness of neural networks is crucial in safety-critical applications, where identifying a reliable input space is essential for effective model selection, robustness evaluation, and the development of reliable control strategies. Most existing robustness verification methods assess the worst-case output under the assumption that the input space is known. However, precisely identifying a verifiable input space , where no adversarial examples exist, is challenging due to the possible high dimensionality, discontinuity, and non-convex nature of the input space. To address this challenge, we propose a novel framework, LEVIS, comprising LEVIS- and LEVIS-. LEVIS- identifies a single, large verifiable ball that intersects at least two boundaries of a bounded region , while LEVIS- systematically captures the entirety of the verifiable space by integrating multiple verifiable balls. Our contributions are fourfold: we introduce a verification framework, LEVIS, incorporating two optimization techniques for computing nearest and directional adversarial points based on mixed-integer programming (MIP); to enhance scalability, we integrate complementary constrained (CC) optimization with a reduced MIP formulation, achieving up to a 17-fold reduction in runtime by approximating the verifiable region in a principled way; we provide a theoretical analysis characterizing the properties of the verifiable balls obtained through LEVIS-; and we validate our approach across diverse applications, including electrical power flow regression and image classification, demonstrating performance improvements and visualizing the geometric properties of the verifiable region.more » « lessFree, publicly-accessible full text available July 14, 2026
- 
            A Unified Approach for Learning the Dynamics of Power System Generators and Inverter-based Resourceshttps://hdl.handle.net/10125/109222more » « lessFree, publicly-accessible full text available January 7, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available