skip to main content


Search for: All records

Award ID contains: 2131143

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 9, 2024
  2. Voice biometrics is drawing increasing attention to user authentication on smart devices. However, voice biometrics is vulnerable to replay attacks, where adversaries try to spoof voice authentication systems using pre-recorded voice samples collected from genuine users. To this end, we propose VoiceGesture, a liveness detection solution for voice authentication on smart devices such as smartphones and smart speakers. With audio hardware advances on smart devices, VoiceGesture leverages built-in speaker and microphone pairs on smart devices as Doppler Radar to sense articulatory gestures for liveness detection during voice authentication. The experiments with 21 participants and different smart devices show that VoiceGesture achieves over 99% and around 98% detection accuracy for text-dependent and text-independent liveness detection, respectively. Moreover, VoiceGesture is robust to different device placements, low audio sampling frequency, and supports medium range liveness detection on smart speakers in various use scenarios, including smart homes and smart vehicles. 
    more » « less
  3. Earables (ear wearables) are rapidly emerging as a new platform encompassing a diverse range of personal applications. The traditional authentication methods hence become less applicable and inconvenient for earables due to their limited input interface. Nevertheless, earables often feature rich around-the-head sensing capability that can be leveraged to capture new types of biometrics. In this work, we propose ToothSonic that leverages the toothprint-induced sonic effect produced by a user performing teeth gestures for earable authentication. In particular, we design representative teeth gestures that can produce effective sonic waves carrying the information of the toothprint. To reliably capture the acoustic toothprint, it leverages the occlusion effect of the ear canal and the inward-facing microphone of the earables. It then extracts multi-level acoustic features to reflect the intrinsic toothprint information for authentication. The key advantages of ToothSonic are that it is suitable for earables and is resistant to various spoofing attacks as the acoustic toothprint is captured via the user's private teeth-ear channel that modulates and encrypts the sonic waves. Our experiment studies with 25 participants show that ToothSonic achieves up to 95% accuracy with only one of the users' tooth gestures. 
    more » « less