skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 10, 2026

Title: From Scarcity to Opportunity: Examining Abuse of the IPv4 Leasing Market
Since the exhaustion of unallocated IP addresses at the Internet Assigned Numbers Authority (IANA), a market for IPv4 addresses has emerged. In complement to purchasing address space, leasing IP addresses is becoming increasingly popular. Leasing provides a cost-effective alternative for organizations that seek to scale up without a high upfront investment. However, malicious actors also benefit from leasing as it enables them to rapidly cycle through different addresses, circumventing security measures such as IP blocklisting. We explore the emerging IP leasing market and its implications for Internet security. We examine leasing market data, leveraging blocklists as an indirect measure of involvement in various forms of network abuse. In February 2025, leased prefixes were 2.89× more likely to be flagged by blocklists compared to non-leased prefixes. This result raises questions about whether the IP leasing market should be subject to closer scrutiny.  more » « less
Award ID(s):
2131987 2120399
PAR ID:
10616449
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-3-903176-74-4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    One of the staples of network defense is blocking traffic to and from a list of "known bad" sites on the Internet. However, few organizations are in a position to produce such a list themselves, so pragmatically this approach depends on the existence of third-party "threat intelligence" providers who specialize in distributing feeds of unwelcome IP addresses. However, the choice to use such a strategy, let alone which data feeds are trusted for this purpose, is rarely made public and thus little is understood about the deployment of these techniques in the wild. To explore this issue, we have designed and implemented a technique to infer proactive traffic blocking on a remote host and, through a series of measurements, to associate that blocking with the use of particular IP blocklists. In a pilot study of 220K US hosts, we find as many as one fourth of the hosts appear to blocklist based on some source of threat intelligence data, and about 2% use one of the 9 particular third-party blocklists that we evaluated. 
    more » « less
  2. Mutually Agreed Norms on Routing Security (MANRS) is an industry-led initiative to improve Internet routing security by encouraging participating networks to implement a series of mandatory or recommended actions. MANRS members must register their IP prefixes in a trusted routing database and use such information to prevent propagation of invalid routing information. MANRS membership has increased significantly in recent years, but the impact of the MANRS initiative on the overall Internet routing security remains unclear. In this paper, we provide the first independent look into the MANRS ecosystem by using publicly available data to analyze the routing behavior of participant networks. We quantify MANRS participants' level of conformance with the stated requirements, and compare the behavior of MANRS and non-MANRS networks. While not all MANRS members fully comply with all required actions, we find that they are more likely to implement routing security practices described in MANRS actions. We assess the relevance of the MANRS effort in securing the overall routing ecosystem. We found that as of May 2022, over 83% of MANRS networks were conformant to the route filtering requirement by dropping BGP messages with invalid information according to authoritative records, and over 95% were conformant to the routing information facilitation requirement, registering their resources in authoritative databases. 
    more » « less
  3. Securing the Internet’s inter-domain routing system against illicit prefix advertisements by third-party networks remains a great concern for the research, standardization, and operator communities. After many unsuccessful attempts to deploy additional security mechanisms for BGP, we now witness increasing adoption of the RPKI (Resource Public Key Infrastructure). Backed by strong cryptography, the RPKI allows network operators to register their BGP prefixes together with the legitimate Autonomous System (AS) number that may originate them via BGP. Recent research shows an encouraging trend: an increasing number of networks around the globe start to register their prefixes in the RPKI. While encouraging, the actual benefit of registering prefixes in the RPKI eventually depends on whether transit providers in the Internet enforce the RPKI’s content, i.e., configure their routers to validate prefix announcements and filter invalid BGP announcements. In this work, we present a broad empirical study tackling the question: To what degree does registration in the RPKI protect a network from illicit announcements of their prefixes, such as prefix hijacks? To this end, we first present a longitudinal study of filtering behavior of transit providers in the Internet, and second we carry out a detailed study of the visibility of legitimate and illegitimate prefix announcements in the global routing table, contrasting prefixes registered in the RPKI with those not registered. We find that an increasing number of transit and access providers indeed do enforce RPKI filtering, which translates to a direct benefit for the networks using the RPKI in the case of illicit announcements of their address space. Our findings bode well for further RPKI adoption and for increasing routing security in the Internet. 
    more » « less
  4. Knowledge about the geographic locations of Internet routers and servers is highly valuable for research on various aspects of Internet structure, performance, economics, and security. Whereas databases for geolocation are commercially available and targeted mostly at end hosts, RIPE offers an open IPmap platform, including its single-radius engine, for geolocation of core Internet infrastructure. This paper introduces the research community to the IPmap single-radius engine and evaluates effectiveness of this method versus commercial geolocation databases NetAcuity and GeoLite2. Access to ground truth constitutes a major challenge in conducting such evaluation studies. The paper collects IP addresses for its study from three sources: virtual machines from the Ring of the Netherlands Network Operators’ Group, M-Lab Pods operated by Google, and CAIDA’s Ark monitors. The ground truth dataset is further diversified through addition of IP addresses that are small latency away from Ark monitors. The evaluation considers accuracy, coverage, and consistency of geolocation as well as effectiveness of the single-radius method for different types of autonomous systems. The paper manually analyzes a problematic case where single-radius mistakenly geolocates an IP address of a Budapest-based router to Vienna. Finally, the paper provides recommendations to both users and developers of the single-radius method and discusses limitations of the reported evaluation. The main conclusion is that the IPmap single-radius engine geolocates core Internet infrastructure more accurately than the considered commercial databases and that Internet researchers can greatly benefit from using the IPmap platform for their geolocation needs. 
    more » « less
  5. IPv6's large address space allows ample freedom for choosing and assigning addresses. To improve client privacy and resist IP-based tracking, standardized techniques leverage this large address space, including privacy extensions and provider prefix rotation. Ephemeral and dynamic IPv6 addresses confound not only tracking and traffic correlation attempts, but also traditional network measurements, logging, and defense mechanisms. We show that the intended anti-tracking capability of these widely deployed mechanisms is unwittingly subverted by edge routers using legacy IPv6 addressing schemes that embed unique identifiers. We develop measurement techniques that exploit these legacy devices to make tracking such moving IPv6 clients feasible by combining intelligent search space reduction with modern high-speed active probing. Via an Internet-wide measurement campaign, we discover more than 9M affected edge routers and approximately 13k /48 prefixes employing prefix rotation in hundreds of ASes worldwide. We mount a six-week campaign to characterize the size and dynamics of these deployed IPv6 rotation pools, and demonstrate via a case study the ability to remotely track client address movements over time. We responsibly disclosed our findings to equipment manufacturers, at least one of which subsequently changed their default addressing logic. 
    more » « less