Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Multilayered plastics are widely used in food packaging and other commercial applications due to their tailored functional properties. By layering different polymers, the multilayered composite material can have enhanced mechanical, thermal, and barrier properties compared to a single plastic. However, there is a significant need to recycle these multilayer plastics, but their complex structure offers significant challenges to their successful recycling. Ultimately, the use and recycling of these complex materials requires the ability to characterize the composition and purity as a means of quality control for both production and recycling processes. New advances and availability of low‐field benchtop1H NMR spectrometers have led to increasing interest in its use for characterization of multicomponent polymers and polymer mixtures. Here, we demonstrate the capability of low‐field benchtop1H NMR spectroscopy for characterization of three common polymers associated with multilayered packaging systems (low‐density polyethylene [LDPE], ethylene vinyl alcohol [EVOH], and Nylon) as well as their blends. Calibration curves are obtained for determining the unknown composition of EVOH and Nylon in multilayered packaging plastics using both the EVOH hydroxyl peak area and an observed peak shift, both yielding results in good agreement with the prepared sample compositions. Additionally, comparison of results extracted for the same samples characterized by our benchtop spectrometer and a 500‐MHz spectrometer found results to be consistent and within 2 wt% on average. Overall, low‐field benchtop1H NMR spectroscopy is a reliable and accessible tool for characterization of these polymer systems.more » « less
-
Free, publicly-accessible full text available May 20, 2026
-
EVOH’s excellent gas barrier properties have enabled its continued market growth in numerous applications including food packaging, fuel tanks, and construction. However, EVOH’s susceptibility to thermo-oxidation limits its ability to be reprocessed. While it is generally known that EVOH degradation leads to cross-linking, detailed degradation rates and mechanisms are not well established. Understanding EVOH degradation has been elusive because readily accessible thermal and spectroscopy methods do not reveal significant changes. Moreover, gel permeation chromatography requires specialized solvents and columns. We report that measuring changes in viscoelasticity with time-resolved rheology (TRR) is a facile way to monitor the temporal dynamics of EVOH degradation. TRR was performed on EVOH grades with ethylene copolymer contents of 27, 32, 48 mol%. As expected, the grade with the highest ethylene content was the most stable. However, with time, all the EVOH grades transitioned from a Carreau-like fluid to a power law fluid and no longer exhibited terminal behavior. Cole-Cole plots also revealed that EVOH relaxation evolved from rapid process into a long, complex process consistent with network formation. The mechanism of degradation was further elucidated by using 13C distortionless enhancement of polarization transfer (DEPT-135) nuclear magnetic resonance spectroscopy. These results showed that degradation occurred by ring-opening of lactone terminal groups that led to cross-linking. This enhanced understanding provides a foundation for developing methods to probe and mitigate EVOH degradation.more » « lessFree, publicly-accessible full text available February 1, 2026
An official website of the United States government
