skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2132311

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a generative statistical model for analyzing time series of planar shapes. Using elastic shape analysis, we separate object kinematics (rigid motions and speed variability) from morphological evolution, representing the latter through transported velocity fields (TVFs). A principal component analysis (PCA) based dimensionality reduction of the TVF representation provides a finite-dimensional Euclidean framework, enabling traditional time-series analysis. We then fit a vector auto-regressive (VAR) model to the TVF-PCA time series, capturing the statistical dynamics of shape evolution. To characterize morphological changes,we use VAR model parameters for model comparison, synthesis, and sequence classification. Leveraging these parameters, along with machine learning classifiers, we achieve high classification accuracy. Extensive experiments on cell motility data validate our approach, demonstrating its effectiveness in modeling and classifying migrating cells based on morphological evolution—marking a novel contribution to the field. 
    more » « less
    Free, publicly-accessible full text available March 1, 2027