Statistical analysis of shape evolution during cell migration is important for gaining insights into biological processes. This paper develops a time-series model for temporal evolution of cellular shapes during cell motility. It uses elastic shape analysis to represent and analyze shapes of cell boundaries (as planar closed curves), thus separating cell shape changes from cell kinematics. Specifically, it utilizes Transported Square-Root Velocity Field (TSRVF), to map non-Euclidean shape sequences into a Euclidean time series. It then uses PCA to reduce Euclidean dimensions and imposes a Vector Auto-Regression (VAR) model on the resulting low-dimensional time series. Finally, it presents some results from VAR-based statistical analysis: estimation of model parameters and diagnostics, synthesis of new shape sequences, and predictions of future shapes given past shapes.
more »
« less
This content will become publicly available on March 1, 2027
Time-series analysis of cellular shapes using transported velocity fields
This paper presents a generative statistical model for analyzing time series of planar shapes. Using elastic shape analysis, we separate object kinematics (rigid motions and speed variability) from morphological evolution, representing the latter through transported velocity fields (TVFs). A principal component analysis (PCA) based dimensionality reduction of the TVF representation provides a finite-dimensional Euclidean framework, enabling traditional time-series analysis. We then fit a vector auto-regressive (VAR) model to the TVF-PCA time series, capturing the statistical dynamics of shape evolution. To characterize morphological changes,we use VAR model parameters for model comparison, synthesis, and sequence classification. Leveraging these parameters, along with machine learning classifiers, we achieve high classification accuracy. Extensive experiments on cell motility data validate our approach, demonstrating its effectiveness in modeling and classifying migrating cells based on morphological evolution—marking a novel contribution to the field.
more »
« less
- PAR ID:
- 10625081
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Pattern Recognition
- Volume:
- 171
- Issue:
- PA
- ISSN:
- 0031-3203
- Page Range / eLocation ID:
- 112056
- Subject(s) / Keyword(s):
- Cell migration, Shape dynamics, Shape time-series, Elastic shape, Cell motility
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A factor-augmented vector autoregressive (FAVAR) model is defined by a VAR equation that captures lead-lag correlations amongst a set of observed variables X and latent factors F, and a calibration equation that relates another set of observed variables Y with F and X. The latter equation is used to estimate the factors that are subsequently used in estimating the parameters of the VAR system. The FAVAR model has become popular in applied economic research, since it can summarize a large number of variables of interest as a few factors through the calibration equation and subsequently examine their influence on core variables of primary interest through the VAR equation. However, there is increasing need for examining lead-lag relationships between a large number of time series, while incorporating information from another high-dimensional set of variables. Hence, in this paper we investigate the FAVAR model under high-dimensional scaling. We introduce an appropriate identification constraint for the model parameters, which when incorporated into the formulated optimization problem yields estimates with good statistical properties. Further, we address a number of technical challenges introduced by the fact that estimates of the VAR system model parameters are based on estimated rather than directly observed quantities. The performance of the proposed estimators is evaluated on synthetic data. Further, the model is applied to commodity prices and reveals interesting and interpretable relationships between the prices and the factors extracted from a set of global macroeconomic indicators.more » « less
-
null (Ed.)A factor-augmented vector autoregressive (FAVAR) model is defined by a VAR equation that captures lead-lag correlations amongst a set of observed variables X and latent factors F, and a calibration equation that relates another set of observed variables Y with F and X. The latter equation is used to estimate the factors that are subsequently used in estimating the parameters of the VAR system. The FAVAR model has become popular in applied economic research, since it can summarize a large number of variables of interest as a few factors through the calibration equation and subsequently examine their influence on core variables of primary interest through the VAR equation. However, there is increasing need for examining lead-lag relationships between a large number of time series, while incorporating information from another high-dimensional set of variables. Hence, in this paper we investigate the FAVAR model under high-dimensional scaling. We introduce an appropriate identification constraint for the model parameters, which when incorporated into the formulated optimization problem yields estimates with good statistical properties. Further, we address a number of technical challenges introduced by the fact that estimates of the VAR system model parameters are based on estimated rather than directly observed quantities. The performance of the proposed estimators is evaluated on synthetic data. Further, the model is applied to commodity prices and reveals interesting and interpretable relationships between the prices and the factors extracted from a set of global macroeconomic indicators.more » « less
-
Many real time series datasets exhibit structural changes over time. A popular model for capturing their temporal dependence is that of vector autoregressions (VAR), which can accommodate structural changes through time evolving transition matrices. The problem then becomes to both estimate the (unknown) number of structural break points, together with the VAR model parameters. An additional challenge emerges in the presence of very large datasets, namely on how to accomplish these two objectives in a computational efficient manner. In this article, we propose a novel procedure which leverages a block segmentation scheme (BSS) that reduces the number of model parameters to be estimated through a regularized least-square criterion. Specifically, BSS examines appropriately defined blocks of the available data, which when combined with a fused lasso-based estimation criterion, leads to significant computational gains without compromising on the statistical accuracy in identifying the number and location of the structural breaks. This procedure is further coupled with new local and exhaustive search steps to consistently estimate the number and relative location of the break points. The procedure is scalable to big high-dimensional time series datasets with a computational complexity that can achieve O(n), where n is the length of the time series (sample size), compared to an exhaustive procedure that requires steps. Extensive numerical work on synthetic data supports the theoretical findings and illustrates the attractive properties of the procedure. Finally, an application to a neuroscience dataset exhibits its usefulness in applications. Supplementary files for this article are available online.more » « less
-
It is well-known that morphological features in the brain undergo changes due to traumatic events and associated disorders such as post-traumatic stress disorder (PTSD). However, existing approaches typically offer group-level comparisons, and there are limited predictive approaches for modeling behavioral outcomes based on brain shape features that can account for heterogeneity in PTSD, which is of paramount interest. We propose a comprehensive shape analysis framework representing brain sub-structures, such as the hippocampus, amygdala, and putamen, as parameterized surfaces and quantifying their shape differences using an elastic shape metric. Under this metric, we compute shape summaries (mean, covariance, PCA) of brain sub-structures and represent individual brain shapes by their principal scores under a shape-PCA basis. These representations are rich enough to allow visualizations of full 3D structures and help understand localized changes. In order to validate the elastic shape analysis, we use the principal components (PCs) to reconstruct the brain structures and perform further evaluation by performing a regression analysis to model PTSD and trauma severity using the brain shapes representedviaPCs and in conjunction with auxiliary exposure variables. We apply our method to data from the Grady Trauma Project (GTP), where the goal is to predict clinical measures of PTSD. The framework seamlessly integrates accurate morphological features and other clinical covariates to yield superior predictive performance when modeling PTSD outcomes. Compared to vertex-wise analysis and other widely applied shape analysis methods, the elastic shape analysis approach results in considerably higher reconstruction accuracy for the brain shape and reveals significantly greater predictive power. It also helps identify local deformations in brain shapes associated with PTSD severity.more » « less
An official website of the United States government
