skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2133142

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This study describes data-denial experiments conducted to examine the impact of assimilating subsets of data from the Targeted Observation by Radars and Unoccupied Aerial Systems of Supercells (TORUS) project on storm-scale ensemble forecasts of two supercells on 8 June 2019. Assimilated data from TORUS include mobile mesonet, unoccupied aerial system (UAS), and radiosonde observations. The TORUS data are divided into three spatial subsets to evaluate the importance of observing different parts of the atmosphere on forecasts of this case: the surface (SFC) subset consisting of just the near-surface mobile mesonet observations, the PBL subset consisting of UAS observations and radiosonde profiles below 762 m, and the FREE subset consisting of radiosonde profiles above 762 m. Data-denial experiments are then conducted by comparing analyses and free forecasts generated using a cycled EnKF data assimilation system assimilating conventional observations, radar observations, and all of the TORUS observations at once with experiments where one of the three subsets is removed in turn as well as a control experiment assimilating only conventional and radar observations. Our results show that assimilating all of the TORUS observations at once in the ALL experiment improves the storm-scale ensemble forecasts much more often than it degrades them and that no one subset of the TORUS data was consistently most important for improving the analyses or forecasts. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026