Abstract Observational data collection is extremely hazardous in supercell storm environments, which makes for a scarcity of data used for evaluating the storm-scale guidance from convection allowing models (CAMs) like the National Oceanic and Atmospheric Administration (NOAA) Warn-on-Forecast System (WoFS). The Targeted Observations with UAS and Radar of Supercells (TORUS) 2019 field mission provided a rare opportunity to not only collect these observations, but to do so with advanced technology: vertically pointing Doppler lidar. One standing question for WoFS is how the system forecasts the feedback between supercells and their near-storm environment. The lidar can observe vertical profiles of wind over time, creating unique datasets to compare to WoFS kinematic predictions in rapidly evolving severe weather environments. Mobile radiosonde data are also presented to provide a thermodynamic comparison. The five lidar deployments (three of which observed tornadic supercells) analyzed show WoFS accurately predicted general kinematic trends in the inflow environment; however, the predicted feedback between the supercell and its environment, which resulted in enhanced inflow and larger storm-relative helicity (SRH), were muted relative to observations. The radiosonde observations reveal an overprediction of CAPE in WoFS forecasts, both in the near and far field, with an inverse relationship between the CAPE errors and distance from the storm. Significance Statement It is difficult to evaluate the accuracy of weather prediction model forecasts of severe thunderstorms because observations are rarely available near the storms. However, the TORUS 2019 field experiment collected multiple specialized observations in the near-storm environment of supercells, which are compared to the same near-storm environments predicted by the National Oceanic and Atmospheric Administration (NOAA) Warn-on-Forecast System (WoFS) to gauge its performance. Unique to this study is the use of mobile Doppler lidar observations in the evaluation; lidar can retrieve the horizontal winds in the few kilometers above ground on time scales of a few minutes. Using lidar and radiosonde observations in the near-storm environment of three tornadic supercells, we find that WoFS generally predicts the expected trends in the evolution of the near-storm wind profile, but the response is muted compared to observations. We also find an inverse relationship of errors in instability to distance from the storm. These results can aid model developers in refining model physics to better predict severe storms.
more »
« less
This content will become publicly available on June 1, 2026
Examining the Impact of Assimilating Surface, PBL, and Free Atmosphere Observations from TORUS on Analyses and Forecasts of Two Supercells on 8 June 2019
Abstract This study describes data-denial experiments conducted to examine the impact of assimilating subsets of data from the Targeted Observation by Radars and Unoccupied Aerial Systems of Supercells (TORUS) project on storm-scale ensemble forecasts of two supercells on 8 June 2019. Assimilated data from TORUS include mobile mesonet, unoccupied aerial system (UAS), and radiosonde observations. The TORUS data are divided into three spatial subsets to evaluate the importance of observing different parts of the atmosphere on forecasts of this case: the surface (SFC) subset consisting of just the near-surface mobile mesonet observations, the PBL subset consisting of UAS observations and radiosonde profiles below 762 m, and the FREE subset consisting of radiosonde profiles above 762 m. Data-denial experiments are then conducted by comparing analyses and free forecasts generated using a cycled EnKF data assimilation system assimilating conventional observations, radar observations, and all of the TORUS observations at once with experiments where one of the three subsets is removed in turn as well as a control experiment assimilating only conventional and radar observations. Our results show that assimilating all of the TORUS observations at once in the ALL experiment improves the storm-scale ensemble forecasts much more often than it degrades them and that no one subset of the TORUS data was consistently most important for improving the analyses or forecasts.
more »
« less
- Award ID(s):
- 2133142
- PAR ID:
- 10658471
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Monthly Weather Review
- Volume:
- 153
- Issue:
- 6
- ISSN:
- 0027-0644
- Page Range / eLocation ID:
- 1105 to 1128
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract On 28 May 2019, a tornadic supercell, observed as part of Targeted Observation by UAS and Radars of Supercells (TORUS) produced an EF-2 tornado near Tipton, Kansas. The supercell was observed to interact with multiple preexisting airmass boundaries. These boundaries and attendant air masses were examined using unoccupied aircraft system (UAS), mobile mesonets, radiosondes, and dual-Doppler analyses derived from TORUS mobile radars. The cool-side air mass of one of these boundaries was found to have higher equivalent potential temperature and backed winds relative to the warm-side air mass; features associated with mesoscale air masses with high theta-e (MAHTEs). It is hypothesized that these characteristics may have facilitated tornadogenesis. The two additional boundaries were produced by a nearby supercell and appeared to weaken the tornadic supercell. This work represents the first time that UAS have been used to examine the impact of preexisting airmass boundaries on a supercell, and it provides insights into the influence environmental heterogeneities can have on the evolution of a supercell.more » « less
-
Abstract The Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP) aims to improve our understanding of extreme rainfall processes in the East Asian summer monsoon. A convection-permitting ensemble-based data assimilation and forecast system (the PSU WRF-EnKF system) was run in real time in the summers of 2020–21 in advance of the 2022 field campaign, assimilating all-sky infrared (IR) radiances from the geostationary Himawari-8 and GOES-16 satellites, and providing 48-h ensemble forecasts every day for weather briefings and discussions. This is the first time that all-sky IR data assimilation has been performed in a real-time forecast system at a convection-permitting resolution for several seasons. Compared with retrospective forecasts that exclude all-sky IR radiances, rainfall predictions are statistically significantly improved out to at least 4–6 h for the real-time forecasts, which is comparable to the time scale of improvements gained from assimilating observations from the dense ground-based Doppler weather radars. The assimilation of all-sky IR radiances also reduced the forecast errors of large-scale environments and helped to maintain a more reasonable ensemble spread compared with the counterpart experiments that did not assimilate all-sky IR radiances. The results indicate strong potential for improving routine short-term quantitative precipitation forecasts using these high-spatiotemporal-resolution satellite observations in the future. Significance Statement During the summers of 2020/21, the PSU WRF-EnKF data assimilation and forecast system was run in real time in advance of the 2022 Prediction of Rainfall Extremes Campaign In the Pacific (PRECIP), assimilating all-sky (clear-sky and cloudy) infrared radiances from geostationary satellites into a numerical weather prediction model and providing ensemble forecasts. This study presents the first-of-its-kind systematic evaluation of the impacts of assimilating all-sky infrared radiances on short-term qualitative precipitation forecasts using multiyear, multiregion, real-time ensemble forecasts. Results suggest that rainfall forecasts are improved out to at least 4–6 h with the assimilation of all-sky infrared radiances, comparable to the influence of assimilating radar observations, with benefits in forecasting large-scale environments and representing atmospheric uncertainties as well.more » « less
-
Abstract Ensemble‐based data assimilation of radar observations across inner‐core regions of tropical cyclones (TCs) in tandem with satellite all‐sky infrared (IR) radiances across the TC domain improves TC track and intensity forecasts. This study further investigates potential enhancements in TC track, intensity, and rainfall forecasts via assimilation of all‐sky microwave (MW) radiances using Hurricane Harvey (2017) as an example. Assimilating Global Precipitation Measurement constellation all‐sky MW radiances in addition to GOES‐16 all‐sky IR radiances reduces the forecast errors in the TC track, rapid intensification (RI), and peak intensity compared to assimilating all‐sky IR radiances alone, including a 24‐hr increase in forecast lead‐time for RI. Assimilating all‐sky MW radiances also improves Harvey's hydrometeor fields, which leads to improved forecasts of rainfall after Harvey's landfall. This study indicates that avenues exist for producing more accurate forecasts for TCs using available yet underutilized data, leading to better warnings of and preparedness for TC‐associated hazards in the future.more » « less
-
Abstract The assimilation of radar reflectivity requires an accurate and efficient forward operator that links the model state variables to radar observations. In this study, newly developed parameterized forward operators (PFO) for radar reflectivity with a new continuous melting model are implemented to assimilate observed radar data. To assess the impact of the novel parameterized reflectivity forward operators on convective storm analysis and forecasting, two distinct sets of cycled assimilation and forecast experiments are conducted. One set of experiments (ExpRFO) uses a conventional Rayleigh‐scattering‐approximation‐based forward operator (RFO) with hydrometeor classification, while the other uses the PFO (ExpPFO_New) for radar reflectivity with a new continuous melting model. Eight high‐impact severe convective weather events from the Hazardous Weather Testbed (HWT) 2019 Spring Experiments are selected for this study. The analysis and forecast results are first examined in detail for a classic tornadic supercell case on 24 May 2019, with the potential benefits provided by the PFO then evaluated for all eight cases. It is demonstrated that ExpPFO_New provides more robust results in terms of improving the short‐term severe weather forecasts. Compared to ExpRFO, ExpPFO_New better reproduces all observed supercells in the analysis field, yields a more continuous and reasonable reflectivity distribution near the melting layer, and improves the strength of the cold pool compared to observations. Overall, ExpPFO_New, initialized from the more accurate analysis fields, produces better forecasts of reflectivity and hourly precipitation with smaller biases, especially at heavy precipitation thresholds.more » « less
An official website of the United States government
