Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 1, 2026
- 
            Binary semantic segmentation in computer vision is a fundamental problem. As a model-based segmentation method, the graph-cut approach was one of the most successful binary segmentation methods thanks to its global optimality guarantee of the solutions and its practical polynomial-time complexity. Recently, many deep learning (DL) based methods have been developed for this task and yielded remarkable performance, resulting in a paradigm shift in this field. To combine the strengths of both approaches, we propose in this study to integrate the graph-cut approach into a deep learning network for end-to-end learning. Unfortunately, backward propagation through the graph-cut module in the DL network is challenging due to the combinatorial nature of the graph-cut algorithm. To tackle this challenge, we propose a novel residual graph-cut loss and a quasi-residual connection, enabling the backward propagation of the gradients of the residual graph-cut loss for effective feature learning guided by the graph-cut segmentation model. In the inference phase, globally optimal segmentation is achieved with respect to the graph-cut energy defined on the optimized image features learned from DL networks. Experiments on the public AZH chronic wound data set and the pancreas cancer data set from the medical segmentation decathlon (MSD) demonstrated promising segmentation accuracy and improved robustness against adversarial attacks.more » « less
- 
            Faeder, James R. (Ed.)The rapid spread of SARS-CoV-2 has placed a significant burden on public health systems to provide swift and accurate diagnostic testing highlighting the critical need for innovative testing approaches for future pandemics. In this study, we present a novel sample pooling procedure based on compressed sensing theory to accurately identify virally infected patients at high prevalence rates utilizing an innovative viral RNA extraction process to minimize sample dilution. At prevalence rates ranging from 0–14.3%, the number of tests required to identify the infection status of all patients was reduced by 69.26% as compared to conventional testing in primary human SARS-CoV-2 nasopharyngeal swabs and a coronavirus model system. Our method provided quantification of individual sample viral load within a pool as well as a binary positive-negative result. Additionally, our modified pooling and RNA extraction process minimized sample dilution which remained constant as pool sizes increased. Compressed sensing can be adapted to a wide variety of diagnostic testing applications to increase throughput for routine laboratory testing as well as a means to increase testing capacity to combat future pandemics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available