Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.more » « less
-
Abstract The COVID-19 pandemic and its aftermath are the most significant socio-economic crises in modern history. The pandemic’s devastating impacts have prompted urgent policy and regulatory action to reduce the risks of future spillover events and pandemics. Stronger regulatory measures for the trade of wildlife are central to discussions of a policy response. A variety of measures, including broad bans on the trade and sale of wildlife to banning specific species for human consumption are among a suite of discussed options. However, the wildlife trade is diverse, complex, and important for the livelihoods of millions of people globally. We argue that reducing the risk of future pandemics stemming from the wildlife trade must follow established principles of governance which include being equitable, responsive, robust, and effective. We demonstrate how incorporating these principles will support the development of context-specific, culturally sensitive, and inclusive responses that recognize the on-the-ground complexity of disease emergence and the social-ecological systems in which the wildlife trade occurs.more » « less
-
Abstract Pathogens can spill over and infect new host species by overcoming a series of ecological and biological barriers. Hendra virus (HeV) circulates in Australian flying foxes and provides a data‐rich study system for identifying environmental drivers underlying spillover events. The frequency of spillover events to horses has varied interannually since the virus was first discovered in 1994. These observations suggest that HeV spillover events are driven, in part, by environmental factors, including loss of flying fox habitat and climate variability.We explicitly examine the impact of environmental variation on the risk of HeV spillover at three spatial scales relevant to this system. We use a dataset of 60 spillover events and boosted regression tree methods to identify environmental features (including concurrent and lagged temperature, rainfall, vegetation indices, land cover, and climate indices) at three spatial scales (1‐km, 20‐km, 100‐km radii) associated with horse contacts and reservoir species ecology.We find that temperature, local (1‐km radius) human population density, and landscape (100‐km radius) forest cover and pasture are the most influential environmental features associated with HeV spillover risk. By including multiple spatial scales and temporal lags in environmental features, we can more accurately quantify risk across space and time than with models that use a single scale. For example, high quality vegetation at the local scale and within a foraging radius (20‐km) in the concurrent month and previous years, combined with poorer quality vegetation at the landscape scale in the concurrent month increase risk of HeV spillover. These and other environmental associations likely influence the dynamic foraging behaviour of reservoir flying foxes and drive contacts that facilitate spillover into horse populations.Synthesis and application: Current management of HeV spillover focuses on local‐scale interventions – primarily through vaccination and detection of infected horses. Our study finds that HeV spillover risk is also driven by environmental changes over much larger scales and demonstrates management practices would benefit from incorporating landscape interventions alongside local interventions.more » « less
-
Objectives We aim to estimate geographic variability in total numbers of infections and infection fatality ratios (IFR; the number of deaths caused by an infection per 1,000 infected people) when the availability and quality of data on disease burden are limited during an epidemic. Methods We develop a noncentral hypergeometric framework that accounts for differential probabilities of positive tests and reflects the fact that symptomatic people are more likely to seek testing. We demonstrate the robustness, accuracy, and precision of this framework, and apply it to the United States (U.S.) COVID-19 pandemic to estimate county-level SARS-CoV-2 IFRs. Results The estimators for the numbers of infections and IFRs showed high accuracy and precision; for instance, when applied to simulated validation data sets, across counties, Pearson correlation coefficients between estimator means and true values were 0.996 and 0.928, respectively, and they showed strong robustness to model misspecification. Applying the county-level estimators to the real, unsimulated COVID-19 data spanning April 1, 2020 to September 30, 2020 from across the U.S., we found that IFRs varied from 0 to 44.69, with a standard deviation of 3.55 and a median of 2.14. Conclusions The proposed estimation framework can be used to identify geographic variation in IFRs across settings.more » « less
-
Bats harbor diverse intracellular Bartonella bacteria, but there is limited understanding of the factors that influence transmission over time. Investigation of Bartonella dynamics in bats could reveal general factors that control transmission of multiple bat-borne pathogens, including viruses. We used molecular methods to detect Bartonella DNA in paired bat (Pteropus medius) blood and bat flies in the family Nycteribiidae collected from a roost in Faridpur, Bangladesh between September 2020 and January 2021. We detected high prevalence of Bartonella DNA in bat blood (35/55, 64%) and bat flies (59/60, 98%), with sequences grouping into three phylogenetic clades. Prevalence in bat blood increased over the study period (33% to 90%), reflecting an influx of juvenile bats in the population and an increase in the prevalence of bat flies. Discordance between infection status and the clade/genotype of detected Bartonella was also observed in pairs of bats and their flies, providing evidence that bat flies take blood meals from multiple bat hosts. This evidence of bat fly transfer between hosts and the changes in Bartonella prevalence during a period of increasing nycteribiid density support the role of bat flies as vectors of bartonellae. The study provides novel information on comparative prevalence and genetic diversity of Bartonella in pteropodid bats and their ectoparasites, as well as demographic factors that affect Bartonella transmission and potentially other bat-borne pathogens.more » « less
-
In this work we identify changes in high-resolution zones across the globe linked by environmental similarity that have implications for agriculture, bioenergy, and zoonosis. We refine exhaustive vector comparison methods with improved similarity metrics as well as provide multiple methods of amalgamation across 744 months of climatic data. The results of the vector comparison are captured as networks which are analyzed using static and longitudinal comparison methods to reveal locations around the globe experiencing dramatic changes in abiotic stress. Specifically we (i) incorporate updated similarity scores and provide a comparison between similarity metrics, (ii) implement a new feature for resource optimization, (iii) compare an agglomerative view to a longitudinal view, (iv) compare across 2-way and 3-way vector comparisons, (v) implement a new form of analysis, and (vi) demonstrate biological applications and discuss implications across a diverse set of species distributions by detecting changes that affect their habitats. Species of interest are related to agriculture (e.g., coffee, wine, chocolate), bioenergy (e.g., poplar, switchgrass, pennycress), as well as those living in zones of concern for zoonotic spillover that may lead to pandemics (e.g., eucalyptus, flying foxes).more » « less
-
Current methods for defining SARS-CoV-2 lineages ignore the vast majority of the SARS-CoV-2 genome. We develop and apply an exhaustive vector comparison method that directly compares all known SARS-CoV-2 genome sequences to produce novel lineage classifications. We utilize data-driven models that (i) accurately capture the complex interactions across the set of all known SARSCoV-2 genomes, (ii) scale to leadership- class computing systems, and (iii) enable tracking how such strains evolve geospatially over time. We show that during the height of the original Omicron surge, countries across Europe, Asia, and the Americas had a spatially asynchronous distribution of Omicron sub-strains. Moreover, neighboring countries were often dominated by either different clusters of the same variant or different variants altogether throughout the pandemic. Analyses of this kind may suggest a different pattern of epidemiological risk than was understood from conventional data, as well as produce actionable insights and transform our ability to prepare for and respond to current and future biological threats.more » « less
An official website of the United States government
