skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2134345

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The combination of photonic integrated circuits and free-space metaoptics has the ability to untie technological knots that require advanced light manipulation due to their conjoined ability to achieve strong light–matter interaction via wave-guiding light over a long distance and shape them via large space-bandwidth product. Rapid prototyping of such a compound system requires component interchangeability. This represents a functional challenge in terms of fabrication and alignment of high-performance optical systems. Here, we report a flexible and interchangeable interface between a photonic integrated circuit and the free space using an array of low-loss metaoptics and demonstrate multifunctional beam shaping at a wavelength of 780 nm. We show that robust and high-fidelity operation of the designed optical functions can be achieved without prior precise characterization of the free-space input nor stringent alignment between the photonic integrated chip and the metaoptics chip. A diffraction limited spot of ∼3 μm for a hyperboloid metalens of numerical aperture 0.15 is achieved despite an input Gaussian elliptical deformation of up to 35% and misalignments of the components of up to 20 μm. A holographic image with a peak signal-to-noise ratio of >10 dB is also reported. 
    more » « less
  2. We demonstrate a chip-scale multichannel acousto-optic beam steering (AOBS) technique on the lithium niobate on insulator (LNOI) platform, realizing compact visible-light continuous beam steering. 
    more » « less