skip to main content


Search for: All records

Award ID contains: 2135579

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work investigates traffic control via controlled connected and automated vehicles (CAVs) using novel controllers derived from the linear-quadratic regulator (LQR) theory. CAV-platoons are modeled as moving bottlenecks impacting the surrounding traffic with their speeds as control inputs. An iterative controller algorithm based on the LQR theory is proposed along with a variant that allows for penalizing abrupt changes in platoon speeds. The controllers use the Lighthill-Whitham-Richards (LWR) model implemented using an extended cell transmission model (CTM) which considers the capacity drop phenomenon for a realistic representation of traffic in congestion. The impact of various parameters of the proposed controller on the control performance is analyzed. The effectiveness of the proposed traffic control algorithms is tested using a traffic control example and compared with existing proportional-integral (PI) and model predictive control (MPC) controllers from the literature. A case study using the TransModeler traffic microsimulation software is conducted to test the usability of the proposed controller as well as existing controllers in a realistic setting and derive qualitative insights. It is observed that the proposed controller works well in both settings to mitigate the impact of the jam caused by a fixed bottleneck. The computation time required by the controller is also small making it suitable for real-time control.

     
    more » « less
    Free, publicly-accessible full text available December 9, 2024
  2. Free, publicly-accessible full text available October 1, 2024
  3. This paper experimentally tests an implementation of a control barrier function (CBF) designed to guarantee a minimum time-gap in car following on an automated vehicle (AV) in live traffic, with a majority occurring on freeways. The CBF supervises a nominal unsafe PID controller on the AV’s velocity. The experimental testing spans two months of driving, of which 1.9 hours of data is collected in which the CBF and nominal controller are active. We find that violations of the guaranteed minimum time-gap are observed, as measured by the vehicle’s on-board radar unit. There are two distinct causes of the violations. First, in multi-lane traffic, Cut-ins from other vehicles represent external disturbances that can immediately violate the minimum guaranteed time gap provided by the CBF. When cut-ins occur, the CBF does eventually return the vehicle to a safe time gap. Second, even when cut-ins do not occur, system model inaccuracies (e.g., sensor error and delay, actuator error and delay) can lead to violations of the minimum time-gap. These violations are small relative to the violations that would have occurred using only the unsafe nominal control law. 
    more » « less
  4. In order to develop custom controllers intended to operate vehicles on a live highway, a series of data collection-focused tests were performed at increasing stages of complexity. Modern vehicles with features like Adaptive Cruise Control (ACC) feature a rich set of sensors and drive-by-wire mechanisms. The presented stages of data collection begins with the analysis of raw data provided by various vehicles, and eventually results in spoofing Controller Area Network (CAN) protocols for sending control commands to operate a vehicle. This paper covers the data and technical efforts needed at various stages. The raw data and tools to plot the data are also publicly available. 
    more » « less