skip to main content

This content will become publicly available on December 9, 2024

Title: CAV Traffic Control to Mitigate the Impact of Congestion from Bottlenecks: A Linear Quadratic Regulator Approach and Microsimulation Study

This work investigates traffic control via controlled connected and automated vehicles (CAVs) using novel controllers derived from the linear-quadratic regulator (LQR) theory. CAV-platoons are modeled as moving bottlenecks impacting the surrounding traffic with their speeds as control inputs. An iterative controller algorithm based on the LQR theory is proposed along with a variant that allows for penalizing abrupt changes in platoon speeds. The controllers use the Lighthill-Whitham-Richards (LWR) model implemented using an extended cell transmission model (CTM) which considers the capacity drop phenomenon for a realistic representation of traffic in congestion. The impact of various parameters of the proposed controller on the control performance is analyzed. The effectiveness of the proposed traffic control algorithms is tested using a traffic control example and compared with existing proportional-integral (PI) and model predictive control (MPC) controllers from the literature. A case study using the TransModeler traffic microsimulation software is conducted to test the usability of the proposed controller as well as existing controllers in a realistic setting and derive qualitative insights. It is observed that the proposed controller works well in both settings to mitigate the impact of the jam caused by a fixed bottleneck. The computation time required by the controller is also small making it suitable for real-time control.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Association for Computing Machinery
Date Published:
Journal Name:
ACM Journal on Autonomous Transportation Systems
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Allowing for a “virtual” full actuation of a rotary inverted pendulum (RIP) system with only a single physical actuator has been a challenging problem. In this paper, a hybrid control scheme that involves a pole-placement feedback controller and an optimal proportional–integral–derivative (PID) or fractional-order PID (FOPID) controller is proposed to simultaneously enable the tracking control of the rotary arm and the stabilization of the pendulum arm in an input–output feedback linearized RIP system. The PID controller is optimized first with the particle swarm optimization (PSO) to obtain three optimal gains, and then the other two parameters of the FOPID controller are optimized with the PSO. Compared to the optimized PID controller, the optimized FOPID controller improves the tracking and stabilizing accuracy by 53% and 29%, respectively, and demonstrates better adaptability for tracking different reference signals. Moreover, the hybrid FOPID controller exhibits 74.8% and 53% higher tracking accuracy than previous optimized model reference adaptive control PID (MRAC-PID) and linear–quadratic regulator (LQR) controllers, respectively. The proposed hybrid controllers are also digitized with different rules and sampling times, showing a closer performance between the discrete-time and continuous-time hybrid controllers under smaller sampling times.

    more » « less
  2. With the increasing penetration of non-synchronous variable renewable energy sources (RES) in power grids, the system's inertia decreases and varies over time, affecting the capability of current control schemes to handle frequency regulation. Providing virtual inertia to power systems has become an interesting topic of research, since it may provide a reasonable solution to address this new issue. However, power dynamics are usually modeled as time-invariant, without including the effect of varying inertia due to the presence of RES. This paper presents a framework to design a fixed learned controller based on datasets of optimal time-varying LQR controllers. In our scheme, we model power dynamics as a hybrid system with discrete modes representing different rotational inertia regimes of the grid. We test the performance of our controller in a twelve-bus system using different fixed inertia modes. We also study our learned controller as the inertia changes over time. By adding virtual inertia we can guarantee stability of high-renewable (low-inertia) modes. The novelty of our work is to propose a design framework for a stable controller with fixed gains for time-varying power dynamics. This is relevant because it would be simpler to implement a proportional controller with fixed gains compared to a time-varying control. 
    more » « less
  3. Common reinforcement learning methods seek optimal controllers for unknown dynamical systems by searching in the "policy" space directly. A recent line of research, starting with [1], aims to provide theoretical guarantees for such direct policy-update methods by exploring their performance in classical control settings, such as the infinite horizon linear quadratic regulator (LQR) problem. A key property these analyses rely on is that the LQR cost function satisfies the "gradient dominance" property with respect to the policy parameters. Gradient dominance helps guarantee that the optimal controller can be found by running gradient-based algorithms on the LQR cost. The gradient dominance property has so far been verified on a case-by-case basis for several control problems including continuous/discrete time LQR, LQR with decentralized controller, H2/H∞ robust control.In this paper, we make a connection between this line of work and classical convex parameterizations based on linear matrix inequalities (LMIs). Using this, we propose a unified framework for showing that gradient dominance indeed holds for a broad class of control problems, such as continuous- and discrete-time LQR, minimizing the L2 gain, and problems using system-level parameterization. Our unified framework provides insights into the landscape of the cost function as a function of the policy, and enables extending convergence results for policy gradient descent to a much larger class of problems. 
    more » « less
  4. Advancing RTHS methods to readily handle multi-dimensional problems has great potential for enabling more advanced testing and synergistically using existing laboratory facilities that have the capacity for such experimentation. However, the high internal coupling between hydraulics actuators and the nonlinear kinematics escalates the complexity of actuator control and boundary condition tracking. To enable researchers in the RTHS community to develop and compare advanced control algorithms, this paper proposes a benchmark control problem for a multi-axial real-time hybrid simulation (maRTHS) and presents its definition and implementation on a steel frame excited by seismic loads at the base. The benchmark problem enables the development and validation of control techniques for tracking both translation and rotation degrees of freedom of a plant that consists of a steel frame, two hydraulic actuators, and a steel coupler with high stiffness that couples the axial displacements of the hydraulic actuators resulting in the required motion of the frame node. In this investigation, the different components of this benchmark were developed, tested, and a set of maRTHS were conducted to demonstrate its feasibility in order to provide a realistic virtual platform. To offer flexibility in the control design process, experimental data for identification purposes, finite element models for the reference structure, numerical, and physical substructure, and plant models with model uncertainties are provided. Also, a sample example of an RTHS design based on a linear quadratic Gaussian controller is included as part of a computational code package, which facilitates the exploration of the tradeoff between robustness and performance of tracking control designs. The goals of this benchmark are to: extend existing control or develop new control techniques; provide a computational tool for investigation of the challenging aspects of maRTHS; encourage a transition to multiple actuator RTHS scenarios; and make available a challenging problem for new researchers to investigate maRTHS approaches. We believe that this benchmark problem will encourage the advancing of the next-generation of controllers for more realistic RTHS methods.

    more » « less
  5. Traditional power reduction techniques such as DVFS or RAPL are challenging to use with web services because they significantly affect the services’ latency and throughput. Previous work sug- gested the use of controllers based on control theory or machine learning to reduce performance degradation under constrained power. However, generating these controllers is challenging as ev- ery web service applications running in a data center requires a power-performance model and a fine-tuned controller. In this paper, we present DDPC, a system for autonomic data-driven controller generation for power-latency management. DDPC automates the process of designing and deploying controllers for dynamic power allocation to manage the power-performance trade-offs for latency- sensitive web applications such as a social network. For each application, DDPC uses system identification techniques to learn an adaptive power-performance model that captures the application’s power-latency trade-offs which is then used to generate and deploy a Proportional-Integral (PI) power controller with gain-scheduling to dynamically manage the power allocation to the server running application using RAPL. We evaluate DDPC with two realistic latency-sensitive web applications under varying load scenarios. Our results show that DDPC is capable of autonomically generating and deploying controllers within a few minutes reducing the ac- tive power allocation of a web-server by more than 50% compared to state-of-the-art techniques while maintaining the latency well below the target of the application. 
    more » « less