skip to main content


Search for: All records

Award ID contains: 2136573

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The current best upper limit for electron electric dipole moment (EDM), |de| < 1.1 × 10−29e cm (90% confidence), was set by the ACME Collaboration in 2018. The ACME experiment uses a spin-precession measurement in a cold beam of thorium monoxide (ThO) molecules to detectde. An improvement in statistical uncertainty would be possible with more efficient use of molecules from the cryogenic buffer gas beam source. Here, we demonstrate electrostatic focusing of the ThO beam with a hexapole lens. This results in a factor of 16 enhancement in the molecular flux detectable downstream, in a beamline similar to that built for the next generation of ACME. We also demonstrate an upgraded rotational cooling scheme that increases the ground state population by 3.5 times compared to no cooling, consistent with expectations and a factor of 1.4 larger than previously in ACME. When combined with other demonstrated improvements, we project over an order of magnitude improvement in statistical sensitivity for the next generation ACME electron EDM search.

     
    more » « less
  2. The application of silicon photomultiplier (SiPM) technology for weak-light detection at a single photon level has expanded thanks to its better photon detection efficiency in comparison to a conventional photomultiplier tube (PMT). SiPMs with large detection area have recently become commercially available, enabling applications where the photon flux is low both temporarily and spatially. On the other hand, several drawbacks exist in the usage of SiPMs such as a higher dark count rate, many readout channels, slow response time, and optical crosstalk; therefore, users need to carefully consider the trade-offs. This work presents a SiPM-embedded compact large-area photon detection module. Various techniques are adopted to overcome the disadvantages of SiPMs so that it can be generally utilized as an upgrade from a PMT. A simple cooling component and recently developed optical crosstalk suppression method are adopted to reduce the noise which is more serious for larger-area SiPMs. A dedicated readout circuit increases the response frequency and reduces the number of readout channels. We favorably compare this design with a conventional PMT and obtain both higher photon detection efficiency and larger-area acceptance.

     
    more » « less
  3. The best limit on the electron electric dipole moment (eEDM) comes from the ACME II experiment [Nature \textbf{562} (2018), 355-360] which probes physics beyond the Standard Model at energy scales well above 1 TeV. ACME II measured the eEDM by monitoring electron spin precession in a cold beam of the metastable H3Δ1 state of thorium monoxide (ThO) molecules, with an observation time τ≈1 ms for each molecule. We report here a new measurement of the lifetime of the ThO (H3Δ1) state, τH=4.2±0.5 ms. Using an apparatus within which τ≈τH will enable a substantial reduction in uncertainty of an eEDM measurement. 
    more » « less
  4. null (Ed.)