skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2137628

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the most famous results in graph theory is that of Kuratowski’s theorem, which states that a graph $$G$$ is non-planar if and only if it contains one of $$K_{3,3}$$ or $$K_5$$ as a topological minor. That is, if some subdivision of either $$K_{3,3}$$ or $$K_5$$ appears as a subgraph of $$G$$. In this case we say that the question of planarity is determined by a finite set of forbidden (topological) minors. A conjecture of Robertson, whose proof was recently announced by Liu and Thomas, characterizes the kinds of graph theoretic properties that can be determined by finitely many forbidden minors. In this extended abstract we will present a categorical version of Robertson’s conjecture, which we have proven in certain cases. We will then illustrate how this categorification, if proven in all cases, would imply many non-trivial statements in the topology of graph configuration spaces. 
    more » « less