Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Upwelling along ocean eastern boundaries is expected to intensify due to coastal wind strengthening driven by increasing land-sea contrast according to the Bakun hypothesis. Here, the latest high-resolution climate simulations that exhibit drastic improvements of upwelling processes reveal far more complex future upwelling changes. The Southern Hemisphere upwelling systems show a future strengthening in coastal winds with a rapid coastal warming, whereas the Northern Hemisphere coastal winds show a decrease with a comparable warming trend. The Bakun mechanism cannot explain these changes. Heat budget analysis indicates that temperature change in the upwelling region is not simply controlled by vertical Ekman upwelling, but also influenced by horizontal heat advection driven by strong near-coast wind stress curl that is neglected in the Bakun hypothesis and poorly represented by the low-resolution models in the Coupled Model Intercomparison Project. The high-resolution climate simulations also reveal a strong spatial variation in future upwelling changes, which is missing in the low-resolution simulations.more » « less
-
Abstract Impacts of model horizontal resolution on sea surface temperature (SST) biases are studied using high‐resolution (HR) and low‐resolution (LR) simulations with the Community Earth System Model (CESM) where the nominal resolutions are 0.1° for ocean and sea‐ice and 0.25° for atmosphere and land in HR, and 1° for all component models in LR, respectively. Results show that, except within eastern boundary upwelling systems, SST is warmer in HR than LR. Globally averaged surface ocean heat budget analysis indicates that 1°C warmer global‐mean SST in HR is mainly attributable to stronger nonlocal vertical mixing and shortwave heat flux, with the former prevailing over the latter in eddy‐active regions. In the tropics, nonlocal vertical mixing is slightly more important than shortwave heat flux for the warmer SST in HR. Further analysis shows that the stronger nonlocal mixing in HR can be attributed to differences in both the surface heat flux and shape function strength used in the parameterization. In addition, the shape function shows a nonlinear relationship with surface heat flux in HR and LR, modulated by the eddy‐induced vertical heat transport. The stronger shortwave heat flux in HR, on the other hand, is mainly caused by fewer clouds in the tropics. Finally, investigation of ocean advection reveals that the improved western boundary currents in HR also contribute to the reduction of SST biases in eddy‐active regions.more » « less
An official website of the United States government
