skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2138063

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bellwied, R; Geurts, F; Rapp, R; Ratti, C; Timmins, A; Vitev, I (Ed.)
    As an important set of thermodynamic quantities, knowledge of the equation of state over a broad range of temperatures and chemical potentials in the QCD phase diagram is crucial for our understanding of strongly-interacting matter. There is a good understanding from first-principles results in lattice QCD, perturbative QCD and chiral effective field theory about the equation of state. However, these approaches are valid in different regimes of the phase diagram, and therefore, a method of providing an equation of state that covers a full range of the phase diagram involves matching together these results with appropriate models in order to fill in the gaps between these regions. Furthermore, with such equations of state, important questions about QCD phase structure can begin to be addressed, such as whether there is a critical point in the QCD phase diagram. In this contribution to the proceedings, equations of state from first-principles and effective theories will be discussed in order to understand how QCD thermodynamics is affected by the presence of a critical point. 
    more » « less
  2. Fluctuations provide a powerful tool for elucidating the nature of strongly-interacting matter in the QCD phase diagram. In heavy-ion-collision systems, the net-particle number fluctuations are captured at the moment of chemical freeze-out. Studies of the chemical freeze-out via susceptibilities from lattice QCD and the Hadron Resonance Gas model contribute to the characterization of the transition region of the QCD phase diagram. This contribution to proceedings will show how susceptibilities can be used to study the interplay between different conserved charges via cross-correlators and to constrain interactions in the hadron gas phase. 
    more » « less
  3. Kim, Y.; Moon, D.H. (Ed.)
    We investigate extensions of the Hadron Resonance Gas (HRG) Model beyond the ideal case by incorporating both attractive and repulsive interactions into the model. When considering additional states exceeding those measured with high confidence by the Particle Data Group, attractive corrections to the overall pressure in the HRG model are imposed. On the other hand, we also apply excluded-volume corrections, which ensure there is no overlap of baryons by turning on repulsive (anti)baryon-(anti)baryon interactions. We emphasize the complementary nature of these two extensions and identify combinations of conserved charge susceptibilities that allow us to constrain them separately. In particular, we find interesting ratios of susceptibilities that are sensitive to one correction and not the other. This allows us to constrain the excluded volume and particle spectrum effects separately. Analysis of the available lattice results suggests the presence of both the extra states in the baryonstrangeness sector and the repulsive baryonic interaction, with indications that hyperons have a smaller repulsive core than non-strange baryons. We note that these results are interesting for heavy-ion-collision systems at both the LHC and RHIC. 
    more » « less
  4. The equation of state (EoS) of QCD is a crucial input for the modeling of heavy-ion-collision (HIC) and neutron-star-merger systems. Calculations of the fundamental theory of QCD, which could yield the true EoS, are hindered by the infamous Fermi sign problem which only allows direct simulations at zero or imaginary baryonic chemical potential. As a direct consequence, the current coverage of the QCD phase diagram by lattice simulations is limited. In these proceedings, two different equations of state based on first-principle lattice QCD (LQCD) calculations are discussed. The first is solely informed by the fundamental theory by utilizing all available diagonal and non-diagonal susceptibilities up to O(µ 4 B) in order to reconstruct a full EoS at finite baryon number, electric charge and strangeness chemical potentials. For the second, we go beyond information from the lattice in order to explore the conjectured phase structure, not yet determined by LQCD methods, to assist the experimental HIC community in their search for the critical point. We incorporate critical behavior into this EoS by relying on the principle of universality classes, of which QCD belongs to the 3D Ising Model. This allows one to study the effects of a singularity on the thermodynamical quantities that make up the equation of state used for hydrodynamical simulations of HICs. Additionally, we ensure that these EoSs are valid for applications to HICs by enforcing conditions of strangeness neutrality and fixed charge-to-baryonnumber ratio. 
    more » « less