skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lattice-QCD-based equations of state at finite temperature and density
The equation of state (EoS) of QCD is a crucial input for the modeling of heavy-ion-collision (HIC) and neutron-star-merger systems. Calculations of the fundamental theory of QCD, which could yield the true EoS, are hindered by the infamous Fermi sign problem which only allows direct simulations at zero or imaginary baryonic chemical potential. As a direct consequence, the current coverage of the QCD phase diagram by lattice simulations is limited. In these proceedings, two different equations of state based on first-principle lattice QCD (LQCD) calculations are discussed. The first is solely informed by the fundamental theory by utilizing all available diagonal and non-diagonal susceptibilities up to O(µ 4 B) in order to reconstruct a full EoS at finite baryon number, electric charge and strangeness chemical potentials. For the second, we go beyond information from the lattice in order to explore the conjectured phase structure, not yet determined by LQCD methods, to assist the experimental HIC community in their search for the critical point. We incorporate critical behavior into this EoS by relying on the principle of universality classes, of which QCD belongs to the 3D Ising Model. This allows one to study the effects of a singularity on the thermodynamical quantities that make up the equation of state used for hydrodynamical simulations of HICs. Additionally, we ensure that these EoSs are valid for applications to HICs by enforcing conditions of strangeness neutrality and fixed charge-to-baryonnumber ratio.  more » « less
Award ID(s):
2138063
PAR ID:
10401715
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Suplemento de la Revista Mexicana de Física
Volume:
3
Issue:
4
ISSN:
2683-2585
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cheshkov, C; Guernane, R; Maire, A (Ed.)
    Although calculations of QCD thermodynamics from first-principle lattice simulations are limited to zero net-density due to the fermion sign problem, several methods have been developed to extend the equation of state (EoS) to finite values of theB,Q,Schemical potentials. Taylor expansion aroundµi=0 (i = B,Q,S) enables to cover with confidence the region up toµi/T< 2.5. Recently, a new method has been developed to compute a 2D EoS in the (T,µB) plane. It was constructed through aT-expansion scheme (TExS), based on a resummation of the Taylor expansion, and is trusted up to densities aroundµB/T= 3.5. We present here the new 4D-TExS EoS, a generalization of the TExS to all 3 chemical potentials, expected to offer a larger coverage than the 4D Taylor expansion EoS. After explaining the basics of theT-Expansion Scheme and how it is generalized to multiple dimensions, we will present results for thermodynamic observables as functions of temperature and both finite baryon and strangeness chemical potentials. 
    more » « less
  2. Kim, Y.; Moon, D.H. (Ed.)
    In this contribution we present a resummation of the Quantum Chromodynamics (QCD) equation of state from lattice simulations at imaginary chemical potentials. We generalize the scheme introduced in a previous work [1], to the case of non-zero strangeness chemical potential. We present continuum extrapolated results for thermodynamic observables in the temperature range 130MeV ≤ T ≤ 280 MeV, for chemical potentials up to μ B / T = 3:5, along the strangeness neutral line. Furthermore, we relax the constraint of strangeness neutrality, by extrapolating to small values of the strangeness-to-baryon-number ratio R = n S / n B . 
    more » « less
  3. null (Ed.)
    We review the equation of state of QCD matter at finite densities. We discuss the construction of the equation of state with net baryon number, electric charge, and strangeness using the results of lattice QCD simulations and hadron resonance gas models. Its application to the hydrodynamic analyses of relativistic nuclear collisions suggests that the interplay of multiple conserved charges is important in the quantitative understanding of the dense nuclear matter created at lower beam energies. Several different models of the QCD equation of state are discussed for comparison. 
    more » « less
  4. Bellwied, R; Geurts, F; Rapp, R; Ratti, C; Timmins, A; Vitev, I (Ed.)
    As an important set of thermodynamic quantities, knowledge of the equation of state over a broad range of temperatures and chemical potentials in the QCD phase diagram is crucial for our understanding of strongly-interacting matter. There is a good understanding from first-principles results in lattice QCD, perturbative QCD and chiral effective field theory about the equation of state. However, these approaches are valid in different regimes of the phase diagram, and therefore, a method of providing an equation of state that covers a full range of the phase diagram involves matching together these results with appropriate models in order to fill in the gaps between these regions. Furthermore, with such equations of state, important questions about QCD phase structure can begin to be addressed, such as whether there is a critical point in the QCD phase diagram. In this contribution to the proceedings, equations of state from first-principles and effective theories will be discussed in order to understand how QCD thermodynamics is affected by the presence of a critical point. 
    more » « less
  5. We present a new equation of state for QCD in which the temperature T and the three chemical potentials for baryon number μ B , electric charge μ Q , and strangeness μ S can be varied independently. This result is based on a generalization of the T expansion scheme, thanks to which the diagonal μ B extrapolation was pushed up to a baryo-chemical potential μ B / T 3.5 for the first time. This considerably extended the coverage of the Taylor expansion, limited to μ B / T < 2.5 3 . As a consequence, we are able to offer a substantially larger coverage of the four-dimensional QCD phase diagram as well, compared to previously available Taylor expansion results. Our findings are based on new continuum estimated lattice data on the full set of second- and fourth-order fluctuations. 
    more » « less