Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2026
-
Free, publicly-accessible full text available September 30, 2026
-
Free, publicly-accessible full text available September 1, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Efficient soil sampling is essential for effective soil management and research on soil health. Traditional site selection methods are labor-intensive and fail to capture soil variability comprehensively. This study introduces a deep learning-based tool that automates soil sampling site selection using spectral images. The proposed framework consists of two key components: an extractor and a predictor. The extractor, based on a convolutional neural network (CNN), derives features from spectral images, while the predictor employs self-attention mechanisms to assess feature importance and generate prediction maps. The model is designed to process multiple spectral images and address the class imbalance in soil segmentation. The model was trained on a soil dataset from 20 fields in eastern South Dakota, collected via drone-mounted LiDAR with high-precision GPS. Evaluation on a test set achieved a mean intersection over union (mIoU) of 69.46 % and a mean Dice coefficient (mDc) of 80.35 %, demonstrating strong segmentation performance. The results highlight the model's effectiveness in automating soil sampling site selection, providing an advanced tool for producers and soil scientists. Compared to existing state-of-the-art methods, the proposed approach improves accuracy and efficiency, optimizing soil sampling processes and enhancing soil research.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
This paper presents LEVIOSA, a novel framework for text- and speech-based uncrewed aerial vehicle (UAV) trajectory generation. By leveraging multimodal large language models (LLMs) to interpret natural language commands, the system converts text and audio inputs into executable flight paths for UAV swarms. The approach aims to simplify the complex task of multi-UAV trajectory generation, which has significant applications in fields such as search and rescue, agriculture, infrastructure inspection, and entertainment. The framework involves two key innovations: a multi-critic consensus mechanism to evaluate trajectory quality and a hierarchical prompt structuring for improved task execution. The innovations ensure fidelity to user goals. The framework integrates several multimodal LLMs for high-level planning, converting natural language inputs into 3D waypoints that guide UAV movements and per-UAV low-level controllers to control each UAV in executing its assigned 3D waypoint path based on the high-level plan. The methodology was tested on various trajectory types with promising accuracy, synchronization, and collision avoidance results. The findings pave the way for more intuitive human–robot interactions and advanced multi-UAV coordination.more » « less
-
Robotic manipulators are widely used in various industries for complex and repetitive tasks. However, they remain vulnerable to unexpected hardware failures. In this study, we address the challenge of enabling a robotic manipulator to complete tasks despite joint malfunctions. Specifically, we develop a reinforcement learning (RL) framework to adaptively compensate for a nonfunctional joint during task execution. Our experimental platform is the Franka robot with seven degrees of freedom (DOFs). We formulate the problem as a partially observable Markov decision process (POMDP), where the robot is trained under various joint failure conditions and tested in both seen and unseen scenarios. We consider scenarios where a joint is permanently broken and where it functions intermittently. Additionally, we demonstrate the effectiveness of our approach by comparing it with traditional inverse kinematics-based control methods. The results show that the RL algorithm enables the robot to successfully complete tasks even with joint failures, achieving a high success rate with an average rate of 93.6%. This showcases its robustness and adaptability. Our findings highlight the potential of RL to enhance the resilience and reliability of robotic systems, making them better suited for unpredictable environments.more » « less
-
Landing a multi-rotor uncrewed aerial vehicle (UAV) on a moving target in the presence of partial observability, due to factors such as sensor failure or noise, represents an outstanding challenge that requires integrative techniques in robotics and machine learning. In this paper, we propose embedding a long short-term memory (LSTM) network into a variation of proximal policy optimization (PPO) architecture, termed robust policy optimization (RPO), to address this issue. The proposed algorithm is a deep reinforcement learning approach that utilizes recurrent neural networks (RNNs) as a memory component. Leveraging the end-to-end learning capability of deep reinforcement learning, the RPO-LSTM algorithm learns the optimal control policy without the need for feature engineering. Through a series of simulation-based studies, we demonstrate the superior effectiveness and practicality of our approach compared to the state-of-the-art proximal policy optimization (PPO) and the classical control method Lee-EKF, particularly in scenarios with partial observability. The empirical results reveal that RPO-LSTM significantly outperforms competing reinforcement learning algorithms, achieving up to 74% more successful landings than Lee-EKF and 50% more than PPO in flicker scenarios, maintaining robust performance in noisy environments and in the most challenging conditions that combine flicker and noise. These findings underscore the potential of RPO-LSTM in solving the problem of UAV landing on moving targets amid various degrees of sensor impairment and environmental interference.more » « less
An official website of the United States government

Full Text Available