skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2140154

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available November 2, 2025
  3. IEEE (Ed.)
    Free, publicly-accessible full text available November 1, 2025
  4. Autonomous vehicles are cyber-physical systems that combine embedded computing and deep learning with physical systems to perceive the world, predict future states, and safely control the vehicle through changing environments. The ability of an autonomous vehicle to accurately predict the motion of other road users across a wide range of diverse scenarios is critical for both motion planning and safety. However, existing motion prediction methods do not explicitly model contextual information about the environment, which can cause significant variations in performance across diverse driving scenarios. To address this limitation, we proposeCASTNet: a dynamic, context-aware approach for motion prediction that (i) identifies the current driving context using a spatio-temporal model, (ii) adapts an ensemble of motion prediction models to fit the current context, and (iii) applies novel trajectory fusion methods to combine predictions output by the ensemble. This approach enables CASTNet to improve robustness by minimizing motion prediction error across diverse driving scenarios. CASTNet is highly modular and can be used with various existing image processing backbones and motion predictors. We demonstrate how CASTNet can improve both CNN-based and graph-learning-based motion prediction approaches and conduct ablation studies on the performance, latency, and model size for various ensemble architecture choices. In addition, we propose and evaluate several attention-based spatio-temporal models for context identification and ensemble selection. We also propose a modular trajectory fusion algorithm that effectively filters, clusters, and fuses the predicted trajectories output by the ensemble. On the nuScenes dataset, our approach demonstrates more robust and consistent performance across diverse, real-world driving contexts than state-of-the-art techniques. 
    more » « less