Abstract This paper investigates temporal correlations in human driving behavior using real-world driving to improve speed forecasting accuracy. These correlations can point to a measurement weighting function with two parameters: a forgetting factor for past speed measurements that the vehicle itself drove with, and a discount factor for the speeds of vehicles ahead based on information from vehicle-to-vehicle communication. The developed weighting approach is applied to a vehicle speed predictor using polynomial regression, a prediction method well-known in the literature. The performance of the developed approach is then assessed in both real-world and simulated traffic scenarios for accuracy and robustness. The new weighting method is applied to an ecological adaptive cruise control system, and its influence is analyzed on the prediction accuracy and the performance of the ecological adaptive cruise control in an electric vehicle powertrain model. The results show that the new prediction method improves energy saving from the eco-driving by up to 4.7% compared to a baseline least-square-based polynomial regression. This is a 10% improvement over the constant speed/acceleration model, a conventional speed predictor.
more »
« less
CASTNet: A Context-Aware, Spatio-Temporal Dynamic Motion Prediction Ensemble for Autonomous Driving
Autonomous vehicles are cyber-physical systems that combine embedded computing and deep learning with physical systems to perceive the world, predict future states, and safely control the vehicle through changing environments. The ability of an autonomous vehicle to accurately predict the motion of other road users across a wide range of diverse scenarios is critical for both motion planning and safety. However, existing motion prediction methods do not explicitly model contextual information about the environment, which can cause significant variations in performance across diverse driving scenarios. To address this limitation, we proposeCASTNet: a dynamic, context-aware approach for motion prediction that (i) identifies the current driving context using a spatio-temporal model, (ii) adapts an ensemble of motion prediction models to fit the current context, and (iii) applies novel trajectory fusion methods to combine predictions output by the ensemble. This approach enables CASTNet to improve robustness by minimizing motion prediction error across diverse driving scenarios. CASTNet is highly modular and can be used with various existing image processing backbones and motion predictors. We demonstrate how CASTNet can improve both CNN-based and graph-learning-based motion prediction approaches and conduct ablation studies on the performance, latency, and model size for various ensemble architecture choices. In addition, we propose and evaluate several attention-based spatio-temporal models for context identification and ensemble selection. We also propose a modular trajectory fusion algorithm that effectively filters, clusters, and fuses the predicted trajectories output by the ensemble. On the nuScenes dataset, our approach demonstrates more robust and consistent performance across diverse, real-world driving contexts than state-of-the-art techniques.
more »
« less
- Award ID(s):
- 2140154
- PAR ID:
- 10562577
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Cyber-Physical Systems
- Volume:
- 8
- Issue:
- 2
- ISSN:
- 2378-962X
- Page Range / eLocation ID:
- 1 to 20
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reliable prediction of vehicle trajectories at signalized intersections is crucial to urban traffic management and autonomous driving systems. However, it presents unique challenges, due to the complex roadway layout at intersections, involvement of traffic signal controls, and interactions among different types of road users. To address these issues, we present in this paper a novel model called Knowledge-Informed Generative Adversarial Network (KI-GAN), which integrates both traffic signal information and multi-vehicle interactions to predict vehicle trajectories accurately. Additionally, we propose a specialized attention pooling method that accounts for vehicle orientation and proximity at intersections. Based on the SinD dataset, our KI-GAN model is able to achieve an Average Displacement Error (ADE) of 0.05 and a Final Displacement Error (FDE) of 0.12 for a 6-second observation and 6-second prediction cycle. When the prediction window is extended to 9 seconds, the ADE and FDE values are further reduced to 0.11 and 0.26, respectively. These results demonstrate the effectiveness of the proposed KI-GAN model in vehicle trajectory prediction under complex scenarios at signalized intersections, which represents a significant advancement in the target field.more » « less
-
Human trajectory prediction is critical for autonomous platforms like self-driving cars or social robots. We present a latent belief energy-based model (LB-EBM) for diverse human trajectory forecast. LB-EBM is a probabilistic model with cost function defined in the latent space to account for the movement history and social context. The low dimensionality of the latent space and the high expressivity of the EBM make it easy for the model to capture the multimodality of pedestrian trajectory distributions. LB-EBM is learned from expert demonstrations (i.e., human trajectories) projected into the latent space. Sampling from or optimizing the learned LB-EBM yields a belief vector which is used to make a path plan, which then in turn helps to predict a long-range trajectory. The effectiveness of LB-EBM and the two-step approach are supported by strong empirical results. Our model is able to make accurate, multi-modal, and social compliant trajectory predictions and improves over prior state-of-the-arts performance on the Stanford Drone trajectory prediction benchmark by 10:9% and on the ETH-UCY benchmark by 27:6%.more » « less
-
Abstract Vehicle‐to‐Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles by improving coordination and removing the barrier of non‐line‐of‐sight sensing. Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system, which can suffer from loss of information due to the inherent issues of their different components, such as sensors' failures or the poor performance of V2X technologies under dense communication channel load. Particularly, information loss affects the target classification module and, subsequently, the safety application performance. To enable reliable and robust CVS systems that mitigate the effect of information loss, a Context‐Aware Target Classification (CA‐TC) module coupled with a hybrid learning‐based predictive modeling technique for CVS systems is proposed. The CA‐TC consists of two modules: a Context‐Aware Map (CAM), and a Hybrid Gaussian Process (HGP) prediction system. Consequently, the vehicle safety applications use the information from the CA‐TC, making them more robust and reliable. The CAM leverages vehicles' path history, road geometry, tracking, and prediction; and the HGP is utilized to provide accurate vehicles' trajectory predictions to compensate for data loss (due to communication congestion) or sensor measurements' inaccuracies. Based on offline real‐world data, a finite bank of driver models that represent the joint dynamics of the vehicle and the drivers' behavior is learned. Offline training and online model updates are combined with on‐the‐fly forecasting to account for new possible driver behaviors. Finally, the framework is validated using simulation and realistic driving scenarios to confirm its potential in enhancing the robustness and reliability of CVS systems.more » « less
-
Hybrid traffic which involves both autonomous and human-driven vehicles would be the norm of the autonomous vehicles’ practice for a while. On the one hand, unlike autonomous vehicles, human-driven vehicles could exhibit sudden abnormal behaviors such as unpredictably switching to dangerous driving modes – putting its neighboring vehicles under risks; such undesired mode switching could arise from numbers of human driver factors, including fatigue, drunkenness, distraction, aggressiveness, etc. On the other hand, modern vehicle-to-vehicle (V2V) communication technologies enable the autonomous vehicles to efficiently and reliably share the scarce run-time information with each other [1]. In this paper, we propose, to the best of our knowledge, the first efficient algorithm that can (1) significantly improve trajectory prediction by effectively fusing the run-time information shared by surrounding autonomous vehicles, and can (2) accurately and quickly detect abnormal human driving mode switches or abnormal driving behavior with formal assurance without hurting human drivers’ privacy. To validate our proposed algorithm, we first evaluate our proposed trajectory predictor on NGSIM and Argoverse datasets and show that our proposed predictor outperforms the baseline methods. Then through extensive experiments on SUMO simulator, we show that our proposed algorithm has great detection performance in both highway and urban traffic. The best performance achieves detection rate of\(97.3\% \), average detection delay of 1.2s, and 0 false alarm.more » « less