Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In recent years, deep learning gained proliferating popularity in the cybersecurity application domain, since when being compared to traditional machine learning methods, it usually involves less human efforts, produces better results, and provides better generalizability. However, the imbalanced data issue is very common in cybersecurity, which can substantially deteriorate the performance of the deep learning models. This paper introduces a transfer learning based method to tackle the imbalanced data issue in cybersecurity using return-oriented programming payload detection as a case study. We achieved 0.0290 average false positive rate, 0.9705 average F1 score and 0.9521 average detection rate on 3 different target domain programs using 2 different source domain programs, with 0 benign training data sample in the target domain. The performance improvement compared to the baseline is a trade-off between false positive rate and detection rate. Using our approach, the total number of false positives is reduced by 23.16%, and as a trade-off, the number of detected malicious samples decreases by 0.68%.more » « less
-
Free, publicly-accessible full text available September 1, 2025
-
Free, publicly-accessible full text available June 19, 2025
-
While network attacks play a critical role in many advanced persistent threat (APT) campaigns, an arms race exists between the network defenders and the adversary: to make APT campaigns stealthy, the adversary is strongly motivated to evade the detection system. However, new studies have shown that neural network is likely a game-changer in the arms race: neural network could be applied to achieve accurate, signature-free, and low-false-alarm-rate detection. In this work, we investigate whether the adversary could fight back during the next phase of the arms race. In particular, noticing that none of the existing adversarial example generation methods could generate malicious packets (and sessions) that can simultaneously compromise the target machine and evade the neural network detection model, we propose a novel attack method to achieve this goal. We have designed and implemented the new attack. We have also used Address Resolution Protocol (ARP) Poisoning and Domain Name System (DNS) Cache Poisoning as the case study to demonstrate the effectiveness of the proposed attack.more » « lessFree, publicly-accessible full text available June 17, 2025
-
Free, publicly-accessible full text available May 1, 2025