Economic models often depend on quantities that are unobservable, either for privacy reasons or because they are difficult to measure. Examples of such variables include human capital (or ability), personal income, unobserved heterogeneity (such as consumer “types”), et cetera. This situation has historically been handled either by simply using observable imperfect proxies for each of the unobservables, or by assuming that such unobservables satisfy convenient conditional mean or independence assumptions that enable their elimination from the estimation problem. However, thanks to tremendous increases in both the amount of data available and computing power, it has become possible to take full advantage of recent formal methods to infer the statistical properties of unobservable variables from multiple imperfect measurements of them. The general framework used is the concept of measurement systems in which a vector of observed variables is expressed as a (possibly nonlinear or nonparametric) function of a vector of all unobserved variables (including unobserved error terms or “disturbances” that may have nonadditively separable affects). The framework emphasizes important connections with related fields, such as nonlinear panel data, limited dependent variables, game theoretic models, dynamic models, and set identification. This review reports the progress made toward the central question of whether there exist plausible assumptions under which one can identify the joint distribution of the unobservables from the knowledge of the joint distribution of the observables. It also overviews empirical efforts aimed at exploiting such identification results to deliver novel findings that formally account for the unavoidable presence of unobservables. (JEL C30, C55, C57, D12, E21, E23, J24)
more »
« less
This content will become publicly available on September 1, 2025
Evasive attacks against autoencoder-based cyberattack detection systems in power systems
- Award ID(s):
- 2140175
- PAR ID:
- 10535308
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Energy and AI
- Volume:
- 17
- Issue:
- C
- ISSN:
- 2666-5468
- Page Range / eLocation ID:
- 100381
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The dual goal of this Special Issue is to highlight the implementation of computational systems modeling tools for K12 science teachers and students and to address equity and access for student groups who have historically been left out of mainstream research on computational systems modeling [...]more » « less
-
Sato, Brian (Ed.)As biological science rapidly generates new knowledge and novel approaches to address increasingly complex and integrative questions, biology educators face the challenge of teaching the next generation of biologists and citizens the skills and knowledge to enable them to keep pace with a dynamic field. Fundamentally, biology is the science of living systems. Not surprisingly, systems is a theme that pervades national reports on biology education reform. In this essay, we present systems as a unifying paradigm that provides a conceptual framework for all of biology and a way of thinking that connects and integrates concepts with practices. To translate the systems paradigm into concrete outcomes to support instruction and assessment in the classroom, we introduce the biology systems-thinking (BST) framework, which describes four levels of systems-thinking skills: 1) describing a system’s structure and organization, 2) reasoning about relationships within the system, 3) reasoning about the system as a whole, and 4) analyzing how a system interacts with other systems. We conclude with a series of questions aimed at furthering conversations among biologists, biology education researchers, and biology instructors in the hopes of building support for the systems paradigm.more » « less