skip to main content


Search for: All records

Award ID contains: 2140392

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Abstract Neural interfaces bridge the nervous system and the outside world by recording and stimulating neurons. Combining electrical and optical modalities in a single, hybrid neural interface system could lead to complementary and powerful new ways to explore the brain. This convergent approach has gained robust and exciting momentum recently in neuroscience and neural engineering research. Here, we review developments in the past several years aiming to achieve such hybrid electrical and optical microsystem platforms. Specifically, we cover three major categories of technological advances: transparent neuroelectrodes, optical neural fibers with electrodes, and neural probes/grids integrating electrodes and microscale light-emitting diodes. We analyze examples of these probes tailored to combine electrophysiological recording with optical imaging or optical stimulation of the brain and discuss possible directions of future innovation. 
    more » « less