skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multifunctional Nanomesh Enables Cellular‐Resolution, Elastic Neuroelectronics
Abstract Silicone‐based devices have the potential to achieve an ideal interface with nervous tissue but suffer from scalability, primarily due to the mechanical mismatch between established electronic materials and soft elastomer substrates. This study presents a novel approach using conventional electrode materials through multifunctional nanomesh to achieve reliable elastic microelectrodes directly on polydimethylsiloxane (PDMS) silicone with an unprecedented cellular resolution. This engineered nanomesh features an in‐plane nanoscale mesh pattern, physically embodied by a stack of three thin‐film materials by design, namely Parylene‐C for mechanical buffering, gold (Au) for electrical conduction, and Poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) for improved electrochemical interfacing. Nanomesh elastic neuroelectronics are validated using single‐unit recording from the small and curvilinear epidural surface of mouse dorsal root ganglia (DRG) with device self‐conformed and superior recording quality compared to plastic control devices requiring manual pressing is demonstrated. Electrode scaling studies from in vivo epidural recording further revealed the need for cellular resolution for high‐fidelity recording of single‐unit activities and compound action potentials. In addition to creating a minimally invasive device to effectively interface with DRG sensory afferents at a single‐cell resolution, this study establishes nanomeshing as a practical pathway to leverage traditional electrode materials for a new class of elastic neuroelectronics.  more » « less
Award ID(s):
2140392 1844762
PAR ID:
10639550
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
36
Issue:
36
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Silicone is utilized widely in medical devices for its compatibility with tissues and bodily fluids, making it a versatile material for implants and wearables. To effectively bond silicone devices to biological tissues, a reliable adhesive is required to create a long‐lasting interface. BioAdheSil, a silicone‐based bioadhesive designed to provide robust adhesion on both sides of the interface is introduced here, facilitating bonding between dissimilar substrates, namely silicone devices and tissues. The adhesive's design focuses on two key aspects: wet tissue adhesion capability and tissue‐infiltration‐based long‐term integration. BioAdheSil is formulated by mixing soft silicone oligomers with siloxane coupling agents and absorbents for bonding the hydrophobic silicone device to hydrophilic tissues. Incorporation of biodegradable absorbents eliminates surface water and controls porosity, while silane crosslinkers provide interfacial strength. Over time, BioAdheSil transitions from nonpermeable to permeable through enzyme degradation, creating a porous structure that facilitates cell migration and tissue integration, potentially enabling long‐lasting adhesion. Experimental results demonstrate that BioAdheSil outperforms commercial adhesives and elicits no adverse response in rats. BioAdheSil offers practical utility for adhering silicone devices to wet tissues, including long‐term implants and transcutaneous devices. Here, its functionality is demonstrated through applications such as tracheal stents and left ventricular assist device lines. 
    more » « less
  2. null (Ed.)
    Thermal conductive gap filler materials are used as thermal interface materials (TIMs) in electronic devices due their numerous advantages, such as higher thermal conductivity, ease of use, and conformity. Silicone is a class of synthetic materials based on a polymeric siloxane backbone which is widely used in thermal gap filler materials. In electronic packages, silicone-based thermal gap filler materials are widely used in industries, whereas silicone-free thermal gap filler materials are emerging as new alternatives for numerous electronics applications. Certainly, characterization of these TIMs is of immense importance since it plays a critical role in heat dissipation and long-term reliability of the electronic packages. Insubstantial studies on the effects of various chemical compounds on the properties of silicone-based and silicone-free TIMs has led to this study, which focuses on the effect of thermal aging on the mechanical, thermal, and dielectric properties of silicone-based and silicone-free TIMs and the chemical compounds that cause the changes in properties of these materials. Characterization techniques such as dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and broadband dielectric spectroscopy (BbDS) are used to study the mechanical, thermal, and dielectric characteristics of these TIMs, which will guide towards a better understanding of the applicability and reliability of these TIMs. The experiments demonstrate that upon thermal aging at 125 °C, the silicone-free TIM becomes hard, while silicone-based TIM remains viscoelastic, which indicates its wide applicability to higher temperature applications for a long time. Though silicone-based TIM displays better mechanical and thermal properties at elevated temperatures, dielectric properties indicate low conductivity for silicone-free TIM, which makes it a better candidate for silicone-sensitive applications where higher electric insulation is desired. 
    more » « less
  3. Abstract The vagus nerve (VN) plays an important role in regulating physiological conditions in the gastrointestinal (GI) tract by communicating via the parasympathetic pathway to the enteric nervous system (ENS). However, the lack of knowledge in the neurophysiology of the VN and GI tract limits the development of advanced treatments for autonomic dysfunctions related to the VN. To better understand the complicated underlying mechanisms of the VN-GI tract neurophysiology, it is necessary to use an advanced device enabled by microfabrication technologies. Among several candidates including intraneural probe array and extraneural cuff electrodes, microchannel electrode array devices can be used to interface with smaller numbers of nerve fibers by securing them in the separate channel structures. Previous microchannel electrode array devices to interface teased nerve structures are relatively bulky with thickness around 200 µm. The thick design can potentially harm the delicate tissue structures, including the nerve itself. In this paper, we present a flexible thin film based microchannel electrode array device (thickness: 11.5 µm) that can interface with one of the subdiaphragmatic nerve branches of the VN in a rat. We demonstrated recording evoked compound action potentials (ECAP) from a transected nerve ending that has multiple nerve fibers. Moreover, our analysis confirmed that the signals are from C-fibers that are critical in regulating autonomic neurophysiology in the GI tract. 
    more » « less
  4. Abstract Understanding the cytoarchitecture and wiring of the brain requires improved methods to record and stimulate large groups of neurons with cellular specificity. This requires miniaturized neural interfaces that integrate into brain tissue without altering its properties. Existing neural interface technologies have been shown to provide high-resolution electrophysiological recording with high signal-to-noise ratio. However, with single implantation, the physical properties of these devices limit their access to one, small brain region. To overcome this limitation, we developed a platform that provides three-dimensional coverage of brain tissue through multisite multifunctional fiber-based neural probes guided in a helical scaffold. Chronic recordings from the spatially expandable fiber probes demonstrate the ability of these fiber probes capturing brain activities with a single-unit resolution for long observation times. Furthermore, usingThy1-ChR2-YFPmice we demonstrate the application of our probes in simultaneous recording and optical/chemical modulation of brain activities across distant regions. Similarly, varying electrographic brain activities from different brain regions were detected by our customizable probes in a mouse model of epilepsy, suggesting the potential of using these probes for the investigation of brain disorders such as epilepsy. Ultimately, this technique enables three-dimensional manipulation and mapping of brain activities across distant regions in the deep brain with minimal tissue damage, which can bring new insights for deciphering complex brain functions and dynamics in the near future. 
    more » « less
  5. ABSTRACT There is growing evidence that minimizing the mechanical mismatch between neural implants and brain tissue mitigates inflammatory, biological responses at the interface under long-term implant conditions. The goal of this study is to develop a brain-like soft, conductive neural interface and use an improvised, penetrating microindentation technique reported by us earlier to quantitatively assess the (a) elastic modulus of the neural interface after implantation, (b) mechanical stresses during penetration of the probe, and (c) periodic stresses at steady-state due to tissue micromotion around the probe. We fabricated poly- dimethylsiloxane (PDMS) matrices with multi-walled carbon nanotubes (MWCNTs) using two distinct but carefully calibrated cross-linking ratios, resulting in hard (elastic modulus∼484 kPa) or soft, brain-like (elastic modulus∼5.7 kPa) matrices, the latter being at least 2 orders of magnitude softer than soft neural interfaces reported so far. Subsequent loading of the hard and soft silicone based matrices with (100% w/w) low-molecular weight PDMS siloxanes resulted in further decrease in the elastic modulus of both matrices. Carbon probes with soft PDMS coating show significantly less maximum axial forces (-587 ± 51.5 µN) imposed on the brain than hard PDMS coated probes (-1,253 ± 252 µN) during and after insertion. Steady-state, physiological micromotion related stresses were also significantly less for soft- PDMS coated probes (55.5 ± 17.4 Pa) compared to hard-PDMS coated probes (141.0 ± 21.7 Pa). The penetrating microindentation technique is valuable to quantitatively assess the mechanical properties of neural interfaces in both acute and chronic conditions. 
    more » « less