skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2140985

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optically resonant particles are key building blocks of many nanophotonic devices such as optical antennas and metasurfaces. Because the functionalities of such devices are largely determined by the optical properties of individual resonators, extending the attainable responses from a given particle is highly desirable. Practically, this is usually achieved by introducing an asymmetric dielectric environment. However, commonly used simple substrates have limited influences on the optical properties of the particles atop. Here, we show that the multipolar scattering of silicon microspheres can be effectively modified by placing the particles on a dielectric-covered mirror, which tunes the coupling between the Mie resonances of microspheres and the standing waves and waveguide modes in the dielectric spacer. This tunability allows selective excitation, enhancement, suppression, and even elimination of the multipolar resonances and enables scattering at extended wavelengths, providing transformative opportunities in controlling light–matter interactions for various applications. We further demonstrate with experiments the detection of molecular fingerprints by single-particle mid-infrared spectroscopy and with simulations strong optical repulsive forces that could elevate the particles from a substrate. 
    more » « less
  2. Microscale temperature sensing and control are essential in various applications. Thermistors are widely utilized for temperature sensing owing to their simple design and high sensitivity. The future of thermistors lies in miniaturization and integration in highly customizable and sustainable electronics. Moreover, the ever-reducing size of the transistors requires the thermistors to scale down proportionally, without any compromise to its functionality. However, fabricating microscale thermistors exhibiting high accuracy and repeatable measurements has been challenging for state-of-the-art device miniaturization. Here, we develop versatile printing of microscale thermistors from silver fluoride solution by exploiting laser-induced opto-thermal microbubbles. The microscale temperature gradients on the bubble surface create an enhanced concentration of silver ions around the bubble to enable high-resolution printing of submicrometer structures with low-concentration precursors and low wastage. We demonstrate the bubble printing of thermistor arrays with both positive and negative thermal coefficients by exploiting the size effect on the electrical conductivity. We further investigate the sensing performance and long-term stability of the printed thermistors and conclude that the bubble-printed thermistors exhibit high-resolution sensing capabilities with long-term stability, promising enhanced performance in medical and semiconductor applications. 
    more » « less