skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2141035

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Comparative evaporation rate testing in a dark environment, commonly used to characterize a reduced vaporization enthalpy in interfacial solar evaporators, requires the assumption of equal energy input between cases. However, this assumption is not generally valid, leading to misleading characterization results. Interfacial evaporators yield larger evaporation rates in dark conditions due to enlarged liquid-vapor surface areas, resulting in increased evaporative cooling and larger environmental temperature differentials. Theoretical and experimental evidence is provided, which shows that these temperature differences invalidate the equal energy input assumption. The results indicate that differences in evaporation rates correspond to energy input variations, without requiring enthalpy to be reduced below theoretical values. These findings offer alternative explanations for previous claims of reduced vaporization enthalpy and contradict enthalpy-related conclusions drawn from differential scanning calorimetry. We conclude that postulating a reduced vaporization enthalpy using the dark environment method is inaccurate and that re-evaluation of vaporization enthalpy reduction is required. 
    more » « less