skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Critical assessment of water enthalpy characterization through dark environment evaporation
Comparative evaporation rate testing in a dark environment, commonly used to characterize a reduced vaporization enthalpy in interfacial solar evaporators, requires the assumption of equal energy input between cases. However, this assumption is not generally valid, leading to misleading characterization results. Interfacial evaporators yield larger evaporation rates in dark conditions due to enlarged liquid-vapor surface areas, resulting in increased evaporative cooling and larger environmental temperature differentials. Theoretical and experimental evidence is provided, which shows that these temperature differences invalidate the equal energy input assumption. The results indicate that differences in evaporation rates correspond to energy input variations, without requiring enthalpy to be reduced below theoretical values. These findings offer alternative explanations for previous claims of reduced vaporization enthalpy and contradict enthalpy-related conclusions drawn from differential scanning calorimetry. We conclude that postulating a reduced vaporization enthalpy using the dark environment method is inaccurate and that re-evaluation of vaporization enthalpy reduction is required.  more » « less
Award ID(s):
2141035 1941743
PAR ID:
10577352
Author(s) / Creator(s):
;
Publisher / Repository:
Science
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
38
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Egolfopoulos, Fokion (Ed.)
    Powdered iron is being investigated for its potential use as a carbon-free fuel due to its ability to burn heterogeneously and produce oxide particles, which can be collected, reduced back to iron and burned again. However, high temperature oxidation of iron particles can induce partial vaporization/decomposition and evolution of nanometric iron oxide particles. To investigate the formation process of nanoparticles in iron combustion, iron powders (consisting of spheroidal 45–53 μm particles) were injected in an electrically-heated drop tube furnace, operated at a maximum gas temperature of 1375 K, where they experienced high heating rates (104 K/s). The particles reacted with oxygen at concentrations of 15, 21, 35, 50 and 100 % by volume in nitrogen diluent gas. Particles ignited and burned brightly, with peak temperatures reaching 2344–2884 K, depending on the oxygen concentration. The observed distribution of the combustion products of iron was bimodal in size and composition, containing (a) dark gray spherical micrometric particles bigger than their iron particle precursors composed of both magnetite and hematite, and (b) highly agglomerated orange-reddish nanometric particles composed of hematite. The mass fraction of nanometric particles accounted for up to 1.7–7.4 % of the collected products, increasing with the oxygen partial pressure. The nanometric particles were spherules, 30–100 nm in diameter. However, they were highly agglomerated with aggregate aerodynamic diameters peaking at 180–560 nm. The yield of nanoparticles increased with increasing oxygen concentration in the furnace. A heuristic model was used to investigate the impact and sensitivity of various strategies for modeling evaporation, aiming to identify key mechanisms that limit the evaporation rate. This study highlights that understanding the type of liquid at the particle surface is crucial, as evaporation can increase significantly with a homogeneous liquid Fe-O particle compared to a core–shell morphology. Additionally, the analysis suggests that evaporation likely occurs in an intermediate regime where gaseous Fe-containing species oxidize in the boundary layer. Understanding these boundary layer processes is essential for accurately modeling the evaporation rate while maintaining computational efficiency. 1. 
    more » « less
  2. Liquid emulsion droplet evaporation is of importance for various sensing and imaging applications. The liquid-to-gas phase transformation is typically triggered thermally or acoustically by low–boiling point liquids, or by inclusion of solid structures that pin the vapor/liquid contact line to facilitate heterogeneous nucleation. However, these approaches lack precise tunability in vaporization behavior. Here, we describe a previously unused approach to control vaporization behavior through an endoskeleton that can melt and blend into the liquid core to either enhance or disrupt cohesive intermolecular forces. This effect is demonstrated using perfluoropentane (C 5 F 12 ) droplets encapsulating a fluorocarbon (FC) or hydrocarbon (HC) endoskeleton. FC skeletons inhibit vaporization, whereas HC skeletons trigger vaporization near the rotator melting transition. Our findings highlight the importance of skeletal interfacial mixing for initiating droplet vaporization. Tuning molecular interactions between the endoskeleton and droplet phase is generalizable for achieving emulsion or other secondary phase transitions, in emulsions. 
    more » « less
  3. The evaporation of droplets on surfaces is a ubiquitous phenomenon essential in nature and industrial applications ranging from thermal management of electronics to self-assembly-based fabrication. In this study, water droplet evaporation on a thin quartz substrate is analyzed using an unsteady two-step arbitrary Lagrangian-Eulerian (ALE) moving mesh model, wherein the evaporation process is simulated during the constant contact radius (CCR) and contact angle (CCA) modes. The numerical model considers mass transfer in the gas domain, flow in the liquid and gas domains, and heat transfer in the solid, liquid, and gas domains. Besides, the model also accounts for interfacial force balance, including thermocapillary stresses, to obtain the instantaneous droplet shape. Experiments involving droplet evaporation on unheated quartz substrates agree with model predictions of contact radius, contact angle, and droplet volume. Model results indicating temperature and velocity distribution across an evaporating water droplet show that the lowest temperatures are at the liquid-gas interface, and a single vortex exists for the predominant duration of the droplet's lifetime. The temperature of the unheated substrate is also significantly reduced due to evaporative cooling. The interfacial evaporation flux distribution, which depends on heat transfer across the droplet and advection in the surrounding medium, shows the highest values near the three-phase contact line. In addition, the model also predicts evaporation dynamics when the substrate is heated and exposed to different advection conditions. Generally, higher evaporation rates result from higher substrate heating and advection rates. However, substrate heating and advection in the surrounding gas have minimal effects on the relative durations of CCR and CCA modes for a given receding contact angle. Specifically, in this case, a 40× increase in substrate heating rate or 7.5× increase in gas velocity can only change these relative durations by 3%. This study also highlights the importance of surface wettability, which affects evaporation dynamics for all the conditions explored by the numerical model. 
    more » « less
  4. Description: Mechanistic analysis of ion desorption from glutaric acid particles used in the development of surface-sensitive mass spectroscopy ionization methods. Abstract: Ionization via desorption of charged analytes from the surface of solid amorphous glutaric acid particles, without the assistance of an external energy source, has been shown to be a promising method that can be coupled to mass spectrometry. We conduct mechanistic studies of the later stages of this ionization process using atomistic molecular dynamics. Our analysis focuses on the hydrogen bonding, diffusion, and ion desorption from nano-aggregates of glutaric acid. These nano-aggregates exhibit an extended H-bonded network, often comprising H-bonded chains, linear dimeric assemblies, and occasionally cyclic trimeric assemblies. These local structures serve as centers for proton transfer reactions. The intermediate hydrocarbon chain between the proton-carrying oxygen sites prevents proton diffusion over a long distance unless there is significant translational or rotational movement of the proton-carrying diacid molecule. Our calculations show that diffusion on the surface is an order of magnitude faster than in the core of the nano-aggregate, which aids effective proton transfer on the particle's exterior. We find that ionic species desorb from the aggregate's surface through independent evaporation events of small clusters, where the ion is coordinated by only a few glutaric acid molecules. Near the nano-aggregate's Rayleigh limit, jets capable of releasing multiple ions were not observed. These observations suggest a more general ion-evaporation mechanism that applies to low-dielectric particles of various sizes, complementing the original ion-evaporation mechanism proposed for aqueous droplets with an approximate radius of 10–15 nm. The combined evidence from molecular modeling presented here and the thermodynamic properties of solid and supercooled liquid glutaric acid indicates that the stronger signals of glutaric acid observed in the mass spectra, relative to other experimentally tested diacids, can be attributed to its significantly lower melting point and the reduced enthalpy of vaporization of its amorphous state compared to other tested diacids. 
    more » « less
  5. Kibler, B.; Millot, G.; Segonds, P. (Ed.)
    The aluminum nitride bandgap energy matches the binding energy between salt and water molecules. Here we study the effect of 405-nm light on the rates of evaporation when saline solutions are im-bibed within a porous ceramic aluminum nitride wick. Sensitive measurements are taken in a self-referencing setup and compared with the capillary fluid response. Evaporation rates increase with light illumination when the solution is more saline in a manner that indicates interfacial charge-transfer characteristics. Our results show consistent trends and strong potential for photonic environmental applications in salt-water separation 
    more » « less