skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2141073

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study presents a finite element model for a hybrid self-centering damper considering the rate and temperature effects and explores the effects of different design parameters on the damper response. The damper, called as superelastic friction damper (SFD), consists of superelastic shape memory alloy (SMA) cables and a frictional energy dissipation mechanism. The experimental response of the SMA cables, frictional unit and overall damper at different loading frequencies and temperature are used to develop numerical model of the damper. Once a validated numerical model is obtained, parametric studies are carried out to evaluate force-displacement response of the damper when the design parameters are altered. The effects of damper design parameters on the equivalent stiffness, dissipated energy, equivalent viscous damping and self-centering capabilities of the damper are analyzed. Based on the findings, the recommendations for the design of the damper are presented. 
    more » « less