Abstract This study investigates the experimental response of a hybrid shape memory alloy (SMA) cable-friction damping device with a specific focus on the failure behavior and reparability of the damper when tested at extreme deformations. The superelastic friction damper (SFD) is a hybrid seismic protection device that combines the high tensile strength and re-centering capability of superelastic SMA cables with stable, repeatable energy dissipation of a friction-based damping system. In this paper, the fabrication of a prototype damper and its experimental testing are discussed. The response of the SFD’s friction and self-centering mechanisms were separately evaluated considering design level deformations, cyclic loading, and large deformations up to failure. The performance of the device after the repair of failed components was also investigated. Findings from the study show that the SFD reached failure at a deformation level that exceeded the design displacement by a factor of 2.2. The force capacity of the SFD at the failure stage was 46% higher than the maximum force at the design deformations. After replacing the failed SMA cables, the damper’s mechanical response was identical to the pre-failure response, illustrating the device’s ability to be restored without hindering performance.
more »
« less
A hybrid self-centering seismic damper: Finite element modeling and parametric analysis
This study presents a finite element model for a hybrid self-centering damper considering the rate and temperature effects and explores the effects of different design parameters on the damper response. The damper, called as superelastic friction damper (SFD), consists of superelastic shape memory alloy (SMA) cables and a frictional energy dissipation mechanism. The experimental response of the SMA cables, frictional unit and overall damper at different loading frequencies and temperature are used to develop numerical model of the damper. Once a validated numerical model is obtained, parametric studies are carried out to evaluate force-displacement response of the damper when the design parameters are altered. The effects of damper design parameters on the equivalent stiffness, dissipated energy, equivalent viscous damping and self-centering capabilities of the damper are analyzed. Based on the findings, the recommendations for the design of the damper are presented.
more »
« less
- PAR ID:
- 10486422
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Journal of Intelligent Material Systems and Structures
- Volume:
- 35
- Issue:
- 4
- ISSN:
- 1045-389X
- Format(s):
- Medium: X Size: p. 440-457
- Size(s):
- p. 440-457
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This pioneering study focuses on the finite element analysis (FEA) of thermomechanical properties of shape memory polymer (SMP) wire ropes and their components under both small- and finite-sliding contact deformation. To validate the FEA, we need to validate both geometric modeling and non-linear material behavior. Owing to intricate geometry, as well as excessive wire interactions in the structure, this part is studied by simulating a 1 × 37 steel wire rope and then comparing it with existing experimental data. To evaluate the response of non-linear material behavior, we employ the available numerical results to model the thermomechanical property of an SMP rectangular bar under a uniaxial test and then verify both constrained and unconstrained recovery behavior. After rigorous validation, two configurations of 1 × 7 and 1 × 27 SMP cables are modeled based on the thermo-visco-hyperelastic constitutive framework for acrylate polymer systems. Upon exerting an axially tensile load on these 1 × 7 and 1 × 27 SMP wire ropes, the response of force and shape recovery, as well as the normal and shear stress distributions, are measured under constrained and unconstrained conditions. For a deeper physical understanding, the influences of different temperature rates (5 and 1 °C min−1), inter-wire sliding frictional coefficient (0.1–0.6), and multiple-shape programming on the stress-strain-temperature relations of these SMP cables are also investigated. Furthermore, based on optimizing two cable factors of diameter and helix angle, and using the design of experiments method, the specific energy of a 1 × 6 SMP cable is maximized. Under different thermomechanical loadings, this study tries to cast light on the remarkable features and possible potential applications of these newly developed SMP actuators which may foster unparalleled advancements in various industries.more » « less
-
null (Ed.)Cables of suspension, cable-stayed and tied-arch bridges, suspended roofs, and power transmission lines are prone to moderate to large-amplitude vibrations in wind because of their low inherent damping. Structural or fatigue failure of a cable, due to these vibrations, pose a significant threat to the safety and serviceability of these structures. Over the past few decades, many studies have investigated the mechanisms that cause different types of flow-induced vibrations in cables such as rain-wind induced vibration (RWIV), vortex-induced vibration (VIV), iced cable galloping, wake galloping, and dry-cable galloping that have resulted in an improved understanding of the cause of these vibrations. In this study, the parameters governing the turbulence-induced (buffeting) and motion-induced wind loads (self-excited) for inclined and yawed dry cables have been identified. These parameters facilitate the prediction of their response in turbulent wind and estimate the incipient condition for onset of dry-cable galloping. Wind tunnel experiments were performed to measure the parameters governing the aerodynamic and aeroelastic forces on a yawed dry cable. This study mainly focuses on the prediction of critical reduced velocity 〖(RV〗_cr) as a function of equivalent yaw angle (*) and Scruton number (Sc) through measurement of aerodynamic- damping and stiffness. Wind tunnel tests using a section model of a smooth cable were performed under uniform and smooth/gusty flow conditions in the AABL Wind and Gust Tunnel located at Iowa State University. Static model tests for equivalent yaw angles of 0º to 45º indicate that the mean drag coefficient 〖(C〗_D) and Strouhal number (St) of a yawed cable decreases with the yaw angle, while the mean lift coefficient 〖(C〗_L) remains zero in the subcritical Reynolds number (Re) regime. Dynamic one degree-of-freedom model tests in across-wind and along-wind directions resulted in the identification of buffeting indicial derivative functions and flutter derivatives of a yawed cable for a range of equivalent yaw angles. Empirical equations for mean drag coefficient, Strouhal number, buffeting indicial derivative functions and critical reduced velocity for dry-cable galloping are proposed for yawed cables. The results indicate a critical equivalent yaw angle of 45° for dry-cable galloping. A simplified design procedure is introduced to estimate the minimum damping required to arrest dry-cable galloping from occurring below the design wind speed of the cable structure. Furthermore, the results from this study can be applied to predict the wind load and response of a dry cable at a specified wind speed for a given yaw angle.more » « less
-
Modern seismic resistant design has been focusing on development of cost effective structural systems which experience minimal damage during an earthquake. Unbonded post-tensioned precast concrete walls provide a suitable solution due to their self-centering behavior and their ability to undergo large nonlinear deformation with minimal damage. Several experimental and analytical investigation focusing on lateral load resisting behavior of unbonded post-tensioned precast walls has been carried out in the past two decades. These investigations have primarily focused on lateral load resistance, self-centering capacity, energy dissipation and extent of damage in confined concrete region of the wall system. Past experimental results have shown that self-centering capacity of the wall system decreases at higher lateral drifts. Particularly, rocking walls with higher energy dissipation capacity, sustain considerable residual displacement. This residual displacement in the wall system may affect the ability of the entire structure to re-center. Though increasing initial prestressing force helps in reducing residual drift, it also subjects concrete to increased axial compressive stress which may lead to premature strength degradation of confined concrete in rocking corners. Accurate prediction of expected concrete strains in confined regions during increasing drift cycle is critical in design of such wall systems. Simplified design procedures available in literature assume different values for plastic hinge length to estimate critical concrete strain values. The results from the experimental tests available in literature were analyzed, to understand the effects of energy dissipating elements on residual drift and to examine the accuracy of simplified design procedures in predicting critical concrete strain. Based on the findings, recommendations are made on design of energy dissipating elements and plastic hinge length for unbonded post-tensioned precast rocking walls.more » « less
-
The effects of abrasion on the heating performance of carbon nanotube (CNT)/epoxy composites were investigated in terms of Joule’s heat, convective heat, and radiative heat under moderate-to-severe and localized abrasive conditions. While the overall heating behavior was characterized by the heating rate and the curvature of the transient response, a numerical solution of the heat equation was used to quantify convective and radiative heat transfers, incorporating the specific heat of each component, the convective heat transfer coefficient, and the Biot number. CNT reinforcement significantly improved wear resistance at a CNT concentration of 0.31 vol. %, but the presence of micro-voids led to a slight increase in wear rate with additional CNT inclusion. Using an equivalent circuit model, local and severe abrasion scenarios were analyzed to determine the variation in electrical conductivity with temperature at different degrees of abrasion, indicating the impact of scattering effects. This analysis provides valuable insights for estimating both wear resistance and the heating performance of self-heated surface materials, with potential applications in future space technologies.more » « less
An official website of the United States government
