The effect of nanoconfinement on the kinetics of benzyl methacrylate radical polymerization is investigated using differential scanning calorimetry. Controlled pore glass (CPG), ordered mesoporous carbons, and mesoporous silica are used as confinement media with pore sizes from 2 to 8 nm. The initial polymerization rate in CPG and mesoporous silica increases relative to the bulk and increases linearly with reciprocal pore size; whereas, the rate in the carbon mesopores decreases linearly with reciprocal pore size; the changes are consistent with the rate being related to the ratio of the pore surface area to pore volume. Induction times are longer for nanoconfined polymerizations, and in the case of CPG and carbon mesopores, autoacceleration occurs earlier, presumably due to the limited diffusivity and lower termination rates for the confined polymer chains. The molecular weight of the polymer synthesized in the nanopores is generally higher than that obtained in the bulk except at the lowest temperatures investigated. The equilibrium conversion under nanoconfinement decreases with decreasing temperature and with confinement size, exhibiting what appears to be a floor temperature at low temperatures.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
The glass transition (Tg) behavior and enthalpy recovery of polystyrene nanorods within an anodic aluminum oxide (AAO) template (supported nanorods) and after removal from AAO (unsupported nanorods) is studied using Flash differential scanning calorimetry. Tg is found to be depressed relative to the bulk by 20 ± 2 K for 20 nm-diameter unsupported polystyrene (PS) nanorods at the slowest cooling rate and by 9 ± 1 K for 55 nm-diameter rods. On the other hand, bulk-like behavior is observed in the case of unsupported 350 nm-diameter nanorods and for all supported rods in AAO. The size-dependent Tg behavior of the PS unsupported nanorods compares well with results for ultrathin films when scaled using the volume/surface ratio. Enthalpy recovery was also studied for the 20 and 350 nm unsupported nanorods with evolution toward equilibrium found to be linear with logarithmic time. The rate of enthalpy recovery for the 350 nm rods was similar to that for the bulk, whereas the rate of recovery was enhanced for the 20 nm rods for down-jump sizes larger than 17 K. A relaxation map summarizes the behavior of the nanorods relative to the bulk and relative to that for the 20 nm-thick ultrathin film. Interestingly, the fragility of the 20 nm-diameter nanorod and the 20 nm ultrathin film are identical within the error of measurements, and when plotted vs departure from Tg (i.e., T − Tg), the relaxation maps of the two samples are identical in spite of the fact that the Tg is depressed 8 K more in the nanorod sample.
Free, publicly-accessible full text available March 28, 2025