skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2142703

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The interactions between charges and excitons involve complex many-body interactions at high densities. The exciton-polaron model has been adopted to understand the Fermi sea screening of charged excitons in monolayer transition metal dichalcogenides. The results provide good agreement with absorption measurements, which are dominated by dilute bright exciton responses. Here we investigate the Fermi sea dressing of spin-forbidden dark excitons in monolayer WSe2. With a Zeeman field, the valley-polarized dark excitons show distinct p-doping dependence in photoluminescence when the carriers reach a critical density. This density can be interpreted as the onset of strongly modified Fermi sea interactions and shifts with increasing exciton density. Through valley-selective excitation and dynamics measurements, we also infer an intervalley coupling between the dark trions and exciton-polarons mediated by the many-body interactions. Our results reveal the evolution of Fermi sea screening with increasing exciton density and the impacts of polaron-polaron interactions, which lay the foundation for understanding electronic correlations and many-body interactions in 2D systems. 
    more » « less
  2. van der Waals magnetic materials open up exciting possibilities to investigate fundamental spin properties in low-dimensional systems and to build compact functional spintronic structures. This review focuses on the recent progress in two-dimensional(2D) magnets that explore beyond the homogenous magnetically-ordered state, including magnons (spin waves), magnetic skyrmions, and complex magnetic domains. Properties of these spin and topology excitations in 2D magnets provide insights into spin-orbit interactions and other forms of coupling between electrons, phonons, and spin-dependent excitations. Such spin-based quasiparticles can also serve as information carriers for next-generation high-speed computing elements. We will first lay out the general theoretical basis of dynamical responses in magnetic systems, followed by detailed descriptions of experimental progress in magnons and spin textures (including magnetic domains and skyrmions). Discussion on the experimental techniques and future perspectives are also included. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026