skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2143061

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We show how to build a compiler for a sparse array language that supports shape operators such as reshaping or concatenating arrays, in addition to compute operators. Existing sparse array programming systems implement generic shape operators for only some sparse data structures, reduce shape operators on other data structures to those, and do not support fusion. Our system compiles sparse array expressions to code that efficiently iterates over reshaped views of irregular sparse data structures, without needing to materialize temporary storage for intermediates. Our evaluation shows that our approach generates sparse array code competitive with popular sparse array libraries: our generated shape operators achieve geometric mean speed-ups of 1.66×–15.3× when compared to hand-written kernels in scipy.sparse and 1.67×–651× when compared to generic implementations in pydata/sparse. For operators that require data structure conversions in these libraries, our generated code achieves geometric mean speed-ups of 7.29×–13.0× when compared to scipy.sparse and 21.3×–511× when compared to pydata/sparse. Finally, our evaluation demonstrates that fusing shape and compute operators improves the performance of several expressions by geometric mean speed-ups of 1.22×–2.23×. 
    more » « less
  2. We introduce indexed streams, a formal operational model and intermediate representation that describes the fused execution of a contraction language that encompasses both sparse tensor algebra and relational algebra. We prove that the indexed stream model is correct with respect to a functional semantics. We also develop a compiler for contraction expressions that uses indexed streams as an intermediate representation. The compiler is only 540 lines of code, but we show that its performance can match both the TACO compiler for sparse tensor algebra and the SQLite and DuckDB query processing libraries for relational algebra. 
    more » « less
  3. We introduce Mosaic, a sparse tensor algebra compiler that can bind tensor expressions to external functions of other tensor algebra libraries and compilers. Users can extend Mosaic by adding new functions and bind a sub-expression to a function using a scheduling API. Mosaic substitutes the bound sub-expressions with calls to the external functions and automatically generates the remaining code using a default code generator. As the generated code is fused by default, users can productively leverage both fusion and calls to specialized functions within the same compiler. We demonstrate the benefits of our dual approach by showing that calling hand-written CPU and specialized hardware functions can provide speedups of up to 206× against fused code in some cases, while generating fused code can provide speedups of up to 3.57× against code that calls external functions in other cases. Mosaic also offers a search system that can automatically map an expression to a set of registered external functions. Both the explicit binding and automatic search are verified by Mosaic. Additionally, the interface for adding new external functions is simple and general. Currently, 38 external functions have been added to Mosaic, with each addition averaging 20 lines of code. 
    more » « less
  4. We propose the Sparse Abstract Machine (SAM), an abstract machine model for targeting sparse tensor algebra to reconfigurable and fixed-function spatial dataflow accelerators. SAM defines a streaming dataflow abstraction with sparse primitives that encompass a large space of scheduled tensor algebra expressions. SAM dataflow graphs naturally separate tensor formats from algorithms and are expressive enough to incorporate arbitrary iteration orderings and many hardware-specific op timizations. We also present Custard, a compiler from a high-level language to SAM that demonstrates SAM's usefulness as an intermediate representation. We automatica lly bind from SAM to a streaming dataflow simulator. We evaluate the generality and extensibility of SAM, explore the performance space of sparse tensor algebra optim izations using SAM, and show SAM's ability to represent dataflow hardware. 
    more » « less