We propose the Sparse Abstract Machine (SAM), an abstract machine model for targeting sparse tensor algebra to reconfigurable and fixed-function spatial dataflow accelerators. SAM defines a streaming dataflow abstraction with sparse primitives that encompass a large space of scheduled tensor algebra expressions. SAM dataflow graphs naturally separate tensor formats from algorithms and are expressive enough to incorporate arbitrary iteration orderings and many hardware-specific op timizations. We also present Custard, a compiler from a high-level language to SAM that demonstrates SAM's usefulness as an intermediate representation. We automatica lly bind from SAM to a streaming dataflow simulator. We evaluate the generality and extensibility of SAM, explore the performance space of sparse tensor algebra optim izations using SAM, and show SAM's ability to represent dataflow hardware.
more »
« less
Indexed Streams: A Formal Intermediate Representation for Fused Contraction Programs
We introduce indexed streams, a formal operational model and intermediate representation that describes the fused execution of a contraction language that encompasses both sparse tensor algebra and relational algebra. We prove that the indexed stream model is correct with respect to a functional semantics. We also develop a compiler for contraction expressions that uses indexed streams as an intermediate representation. The compiler is only 540 lines of code, but we show that its performance can match both the TACO compiler for sparse tensor algebra and the SQLite and DuckDB query processing libraries for relational algebra.
more »
« less
- PAR ID:
- 10466652
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the ACM on Programming Languages
- Volume:
- 7
- Issue:
- PLDI
- ISSN:
- 2475-1421
- Page Range / eLocation ID:
- 1169 to 1193
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sparse tensor networks represent contractions over multiple sparse tensors. Tensor contractions are higher-order analogs of matrix multiplication. Tensor networks arise commonly in many domains of scientific computing and data science. Such networks are typically computed using a tree of binary contractions. Several critical inter-dependent aspects must be considered in the generation of efficient code for a contraction tree, including sparse tensor layout mode order, loop fusion to reduce intermediate tensors, and the mutual dependence of loop order, mode order, and contraction order. We propose CoNST, a novel approach that considers these factors in an integrated manner using a single formulation. Our approach creates a constraint system that encodes these decisions and their interdependence, while aiming to produce reduced-order intermediate tensors via fusion. The constraint system is solved by the Z3 SMT solver and the result is used to create the desired fused loop structure and tensor mode layouts for the entire contraction tree. This structure is lowered to the IR of the TACO compiler, which is then used to generate executable code. Our experimental evaluation demonstrates significant performance improvements over current state-of-the-art sparse tensor compiler/library alternatives.more » « less
-
We introduce SpDISTAL, a compiler for sparse tensor algebra that targets distributed systems. SpDISTAL combines separate descriptions of tensor algebra expressions, sparse data structures, data distribution, and computation distribution. Thus, it enables distributed execution of sparse tensor algebra expressions with a wide variety of sparse data structures and data distributions. SpDISTAL is implemented as a C++ library that targets a distributed task-based runtime system and can generate code for nodes with both multi-core CPUs and multiple GPUs. SpDISTAL generates distributed code that achieves performance competitive with hand-written distributed functions for specific sparse tensor algebra expressions and that outperforms general interpretation-based systems by one to two orders of magnitude.more » « less
-
This article presents a code generator for sparse tensor contraction computations. It leverages a mathematical representation of loop nest computations in the sparse polyhedral framework (SPF), which extends the polyhedral model to support non-affine computations, such as those that arise in sparse tensors. SPF is extended to perform layout specification, optimization, and code generation of sparse tensor code: (1) We develop a polyhedral layout specification that decouples iteration spaces for layout and computation; and (2) we develop efficient co-iteration of sparse tensors by combining polyhedra scanning over the layout of one sparse tensor with the synthesis of code to find corresponding elements in other tensors through an SMT solver. We compare the generated code with that produced by a state-of-the-art tensor compiler, TACO. We achieve on average 1.63× faster parallel performance than TACO on sparse-sparse co-iteration and describe how to improve that to 2.72× average speedup by switching the find algorithms. We also demonstrate that decoupling iteration spaces of layout and computation enables additional layout and computation combinations to be supported.more » « less
-
SparseAuto: An Auto-scheduler for Sparse Tensor Computations using Recursive Loop Nest RestructuringAutomated code generation and performance enhancements for sparse tensor algebra have become essential in many real-world applications, such as quantum computing, physical simulations, computational chemistry, and machine learning. General sparse tensor algebra compilers are not always versatile enough to generate asymptotically optimal code for sparse tensor contractions. This paper shows how to generate asymptotically better schedules for complex sparse tensor expressions using kernel fission and fusion. We present generalized loop restructuring transformations to reduce asymptotic time complexity and memory footprint. Furthermore, we present an auto-scheduler that uses a partially ordered set (poset)-based cost model that uses both time and auxiliary memory complexities to prune the search space of schedules. In addition, we highlight the use of Satisfiability Module Theory (SMT) solvers in sparse auto-schedulers to approximate the Pareto frontier of better schedules to the smallest number of possible schedules, with user-defined constraints available at compile-time. Finally, we show that our auto-scheduler can select better-performing schedules and generate code for them. Our results show that the auto-scheduler provided schedules achieve orders-of-magnitude speedup compared to the code generated by the Tensor Algebra Compiler (TACO) for several computations on different real-world tensors.more » « less
An official website of the United States government

