Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Low dimensional (LD) organic metal halide hybrids (OMHHs) have recently emerged as new generation functional materials with exceptional structural and property tunability. Despite the remarkable advances in the development of LD OMHHs, optical properties have been the major functionality extensively investigated for most of LD OMHHs developed to date, while other properties, such as magnetic and electronic properties, remain significantly under‐explored. Here, we report for the first time the characterization of the magnetic and electronic properties of a 1D OMHH, organic‐copper (II) chloride hybrid (C8H22N2)Cu2Cl6. Owing to the antiferromagnetic coupling between Cu atoms through chloride bridges in 1D [Cu2Cl62−]∞chains, (C8H22N2)Cu2Cl6is found to exhibit antiferromagnetic ordering with a Néel temperature of 24 K. The two‐terminal (2T) electrical measurement on a (C8H22N2)Cu2Cl6single crystal reveals its insulating nature. This work shows the potential of LD OMHHs as a highly tunable quantum material platform for spintronics.more » « less
- 
            Abstract Hybrid magnonic systems are a newcomer for pursuing coherent information processing owing to their rich quantum engineering functionalities. One prototypical example is hybrid magnonics in antiferromagnets with an easy-plane anisotropy that resembles a quantum-mechanically mixed two-level spin system through the coupling of acoustic and optical magnons. Generally, the coupling between these orthogonal modes is forbidden due to their opposite parity. Here we show that the Dzyaloshinskii–Moriya-Interaction (DMI), a chiral antisymmetric interaction that occurs in magnetic systems with low symmetry, can lift this restriction. We report that layered hybrid perovskite antiferromagnets with an interlayer DMI can lead to a strong intrinsic magnon-magnon coupling strength up to 0.24 GHz, which is four times greater than the dissipation rates of the acoustic/optical modes. Our work shows that the DMI in these hybrid antiferromagnets holds promise for leveraging magnon-magnon coupling by harnessing symmetry breaking in a highly tunable, solution-processable layered magnetic platform.more » « less
- 
            Improving the photon-magnon coupling strength can be done by tuning the structure of microwave resonators to better interact with the magnon counterpart. Planar resonators accommodating unconventional photon modes beyond the half- and quarter-wavelength designs have been explored due to their optimized mode profiles and potentials for on-chip integration. Here, we designed and fabricated an actively controlled ring resonator supporting the spoof localized surface plasmons (LSPs), and implemented it in the investigation of photon-magnon coupling for hybrid magnonic applications. We demonstrated gain-assisted photon-magnon coupling with the YIG magnon mode under several different sample geometries. The achieved coupling amplification largely benefits from the high quality factor (Q-factor) due to the additional gain provided by a semiconductor amplifier, which effectively increases the Q-factor from a nearly null state (passive resonance) to more than 1000 for a quadrupole LSP mode. Our results suggest an additional control knob for manipulating photon-magnon coupled systems exploiting external controls of gain and loss.more » « less
- 
            Rashba spin–orbit coupling locks the spin with the momentum of charge carriers at the broken inversion interfaces, which could generate a large spin galvanic response. Here, we demonstrate spin-to-charge conversion (inverse Rashba–Edelstein effect) in KTaO3(111) two-dimensional electron systems. We explain the results in the context of electronic structure, orbital character, and spin texture at the KTaO3(111) interfaces. We also show that the angle dependence of the spin-to-charge conversion on in-plane magnetic field exhibits a nontrivial behavior, which matches the symmetry of the Fermi states. Results point to opportunities to use spin-to-charge conversion as a tool to investigate the electronic structure and spin texture.more » « lessFree, publicly-accessible full text available March 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
