skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2144171

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nature‐inspired functional surfaces with micro‐ and nanoscale features have garnered interest for potential applications in optics, imaging, and sensing. Traditional fabrication methods, such as lithography and self‐assembly, face limitations in versatility, scalability, and morphology control. This study introduces an innovative technology, condensed droplet polymerization (CDP), for fabricating polymeric micro‐ and nano‐dome arrays (PDAs) with readily tunable geometric properties—a challenging feat for conventional methods. The CDP process leverages free‐radical polymerization in condensed monomer droplets, allowing rapid production of PDAs with targeted sizes, radii of curvature, and surface densities by manipulating a key synthesis parameter: the temperature of a filament array that activates initiators. This work systematically unravels its effects on polymerization kinetics, viscoelastic properties of the polymerizing droplets, and geometric characteristics of the PDAs. Utilizing in situ digital microscope, this work reveals the morphological evolution of the PDAs during the process. The resulting PDAs exhibit distinct optical properties, including magnification that enables high‐resolution imaging beyond the diffraction limit of conventional microscopes. This work demonstrates the ability to magnify and focus light, enhancing imaging of subwavelength structures and biological specimens. This work advances the understanding of polymerization mechanisms in nano‐sized reactors (i.e., droplets) and paves the way for developing compact optical imaging and sensing technologies. 
    more » « less
  2. Abstract Initiated Chemical Vapor Deposition (iCVD) is a versatile and powerful technique for controlling the morphology of polymeric and hybrid thin films, with applications spanning from electronics to biomedical devices. This review highlights recent advancements in iCVD technology that enable precise morphological control from creating ultrasmooth films to self‐assembled nanostructures. Advances in reactor design now allow for in situ monitoring of key parameters, such as film thickness and surface imaging, providing real‐time insights into material morphology. Surface morphology is influenced by both the substrate and coating layer. For the former, iCVD offers significant advantages in creating defect‐free, conformal coatings over complex substrates, making it particularly well‐suited for flexible electronics, optical devices, and antifouling/antimicrobial biointerfaces. For the latter, iCVD has been leveraged for the fabrication of microstructured coatings that improve energy storage, gas sensing, and pathogen detection, superhydrophobic or anti‐icing surfaces. Its all‐dry processing and compatibility with temperature‐sensitive substrates further emphasize its potential for sustainable manufacturing. The ability to fine‐tune film chemistry and morphology, combined with the scalability, positions iCVD as a promising tool for addressing future technological challenges in advanced materials design. 
    more » « less
  3. We report a purely mechanical “cold-compression flow” method for fabricating Zn, Sn, and In substrates with tunable crystallographic textures. Using textured Zn as a model system, we investigate Zn electrocrystallization and demonstrate correlated growth of crystalline films with correlation lengths from tens to hundreds of micrometers. At 5 milliamperes per square centimeter (mA/cm2), capacities between 20 and 82 milliampere hours per square centimeter (mA·hour/cm2) are achieved depending on substrate texture level. At higher currents (40 mA/cm2), capacities reach up to 604 mA·hour/cm2. Rotating disk electrode studies show that dominantly (002) textured Zn substrates exhibit enhanced corrosion resistance and reduced interphase passivation. We introduce an effective Damköhler number (Da*) to concisely describe morphological evolution during electrocrystallization across substrates with different textures. High-texture (002) Zn substrates substantially enhance performance in high-capacity (~20 mA·hour/cm2) symmetric Zn||Zn cells and full cells (Zn||δ-MnO2and Zn||I2), enabling fast-charging and prolonged energy storage in coin and pouch rechargeable Zn battery formats. 
    more » « less
    Free, publicly-accessible full text available July 11, 2026
  4. Free, publicly-accessible full text available May 20, 2026
  5. Free, publicly-accessible full text available April 22, 2026
  6. Ion-conducting polymers (ICPs) are gaining interest in various scientific and technological fields. This review highlights advancements in ICP thin films using chemical vapor deposition (CVD) and addresses challenges of traditional methods. 
    more » « less
    Free, publicly-accessible full text available March 5, 2026
  7. Size-controlled polymer nanodomes (PNDs) benefit a broad cross-section of existing and emerging technologies. Condensed droplet polymerization (CDP) is a vacuum-based synthesis technology that produces PNDs from monomer precursors in a single step. However, the effect of synthesis and processing conditions on the PND size distribution remains elusive. Towards size distribution control, we report the effect of substrate temperature, on which monomer droplets condense, on the size distribution of PNDs. We take a reductionist approach and operate the CDP under batch mode to match the conditions commonly used in condensation research. Notably, despite the rich knowledge base in dropwise condensation, the behavior of nonpolar liquids like a common monomer, i.e., 2-hydroxyethyl methacrylate (HEMA), is not well understood. We bridge that gap by demonstrating that dropwise condensation of HEMA follows a two-stage growth process. Early-stage growth is dominated by drop nucleation and growth, giving rise to relatively uniform sizes with a lognormal distribution, whereas late-stage growth is dominated by the combined effect of drop coalescence and renucleation, leading to a bimodal size distribution. This new framework for understanding the PND size distribution enables an unprecedented population of PNDs. Their controlled size distribution has the potential to enable programmable properties for emergent materials. 
    more » « less