skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2144216

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 3D-printed microdevices have become increasingly important to the advancement of point-of-care (POC) immunoassays. Despite its great potential, using 3D-printed surfaces on the solid support for immunorecognition has been limited due to the non-ideal adsorption properties for many photocurable resins. In this work, we report a simple surface modification protocol that works for diverse commercial photocurable resins, improving ELISAs performed directly on 3D-printed devices. This surface modification strategy involves surface activation via air plasma followed by the one-step incubation of GLYMO-labeled streptavidin. We successfully immobilized biotinylated anti-activin A antibodies on the 3D-printed surfaces and performed the complete ELISA protocol on the 3D-printed surfaces. We demonstrated that this protocol achieved an improved performance over passive adsorption for ELISAs. The present method is also compatible with diverse commercial resins and works with both microwells and microchannels. Finally, this method demonstrated a comparable limit of detection to the ELISA performed using commercial microwells. We believe the simplicity and broad compatibility of the present surface modification strategy will facilitate the development of 3D-printed POC ELISA devices. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available November 1, 2025
  3. Nucleic acid tests are key tools for the detection and diagnosis of many diseases. In many cases, the amplification of the nucleic acids is required to reach a detectable level. To make nucleic acid amplification tests more accessible to a point-of-care (POC) setting, isothermal amplification can be performed with a simple heating source. Although these tests are being performed in bulk reactions, the quantification is not as accurate as it would be with digital amplification. Here, we introduce the use of the vibrating sharp-tip capillary for a simple and portable system for tunable on-demand droplet generation. Because of the large range of droplet sizes possible and the tunability of the vibrating sharp-tip capillary, a high dynamic range (~2 to 6000 copies/µL) digital droplet loop-mediated isothermal amplification (ddLAMP) system has been developed. It was also noted that by changing the type of capillary on the vibrating sharp-tip capillary, the same mechanism can be used for simple and portable DNA fragmentation. With the incorporation of these elements, the present work paves the way for achieving digital nucleic acid tests in a POC setting with limited resources. 
    more » « less
  4. Pumping is an essential component in many microfluidic applications. Developing simple, small-footprint, and flexible pumping methods is of great importance to achieve truly lab-on-a-chip systems. Here, we report a novel acoustic pump based on the atomization effect induced by a vibrating sharp-tip capillary. As the liquid is atomized by the vibrating capillary, negative pressure is generated to drive the movement of fluid without the need to fabricate special microstructures or use special channel materials. We studied the influence of the frequency, input power, internal diameter (ID) of the capillary tip, and liquid viscosity on the pumping flow rate. By adjusting the ID of the capillary from 30 µm to 80 µm and the power input from 1 Vpp to 5 Vpp, a flow rate range of 3 to 520 µL/min can be achieved. We also demonstrated the simultaneous operation of two pumps to generate parallel flow with a tunable flow rate ratio. Finally, the capability of performing complex pumping sequences was demonstrated by performing a bead-based ELISA in a 3D-printed microdevice. 
    more » « less
  5. Digital biosensing assays demonstrate remarkable advantages over conventional biosensing systems because of their ability to achieve single-molecule detection and absolute quantification. Unlike traditional low-abundance biomarking screening, digital-based biosensing systems reduce sample volumes significantly to the fL-nL level, which vastly reduces overall reagent consumption, improves reaction time and throughput, and enables high sensitivity and single target detection. This review presents the current technology for compartmentalizing reactions and their applications in detecting proteins and nucleic acids. We also analyze existing challenges and future opportunities associated with digital biosensing and research opportunities for developing integrated digital biosensing systems. 
    more » « less