skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2144360

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 6, 2026
  2. A comprehensive set of single-component and binary isotherms were collected for ethanol/water adsorption into the siliceous forms of 185 known zeolites using grand-canonical Monte Carlo simulations. Using these data, a systematic analysis of ideal/real adsorbed-solution theory (IAST/RAST) was conducted and activity coefficients were derived for ethanol/water mixtures adsorbed in different zeolites based on RAST. It was found that activity coefficients of ethanol are close to unity while activity coefficients of water are larger in most zeolites, indicating a positive excess free energy of the mixture. This observation can be attributed to water/ethanol interactions being less favorable than water/water interactions in the single-component adsorption of water at comparable loadings. The deviation from ideal behavior can be highly structure-dependent but no clear correlation with pore diameters was identified. Our analysis also demonstrates the following: (1) accurate unary isotherms in the low-loading regime are critical for obtaining physically sensible activity coefficients; (2) the global regression scheme to solve for activity model parameters performs better than fitting activity models to activity coefficients calculated locally at each binary state point; and (3) including the dependence on adsorption potential offers only a minor benefit for describing binary adsorption at the lowest fugacities. Finally, the Margules activity model was found incapable of capturing the non-ideal adsorption behavior over the entire range of fugacities and compositions in all zeolites, but for conditions typical of solution-phase adsorption, RAST predictions using zeolite-specific or even bulk Margules parameters provide an improved description compared to IAST. 
    more » « less
    Free, publicly-accessible full text available January 14, 2026
  3. We report the use of fluorinated polymer zwitterions to build hybrid systems for efficient CO2electroreduction. 
    more » « less
  4. A shift of the Li+ion hopping mechanism with temperature in solid-state lithium lanthanum titanate (LLTO) electrolytes was discovered usingab initiometadynamics simulations. 
    more » « less
  5. We report the use of polymer N -heterocyclic carbenes (NHCs) to control the microenvironment surrounding metal nanocatalysts, thereby enhancing their catalytic performance in CO 2 electroreduction. Three polymer NHC ligands were designed with different hydrophobicity: hydrophilic poly(ethylene oxide) (PEO–NHC), hydrophobic polystyrene (PS–NHC), and amphiphilic block copolymer (BCP) (PEO- b -PS–NHC). All three polymer NHCs exhibited enhanced reactivity of gold nanoparticles (AuNPs) during CO 2 electroreduction by suppressing proton reduction. Notably, the incorporation of hydrophobic PS segments in both PS–NHC and PEO- b -PS–NHC led to a twofold increase in the partial current density for CO formation, as compared to the hydrophilic PEO–NHC. While polymer ligands did not hinder ion diffusion, their hydrophobicity altered the localized hydrogen bonding structures of water. This was confirmed experimentally and theoretically through attenuated total reflectance surface-enhanced infrared absorption spectroscopy and molecular dynamics simulation, demonstrating improved CO 2 diffusion and subsequent reduction in the presence of hydrophobic polymers. Furthermore, NHCs exhibited reasonable stability under reductive conditions, preserving the structural integrity of AuNPs, unlike thiol-ended polymers. The combination of NHC binding motifs with hydrophobic polymers provides valuable insights into controlling the microenvironment of metal nanocatalysts, offering a bioinspired strategy for the design of artificial metalloenzymes. 
    more » « less