Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 23, 2025
-
Free, publicly-accessible full text available July 23, 2025
-
We consider a dynamic pricing problem where customer response to the current price is impacted by the customer price expectation, aka reference price. We study a simple and novel reference price mechanism where reference price is the average of the past prices offered by the seller. As opposed to the more commonly studied exponential smoothing mechanism, in our reference price mechanism the prices offered by seller have a longer-term effect on the future customer expectations. We show that under this mechanism, a markdown policy is near-optimal irrespective of the parameters of the model. This matches the common intuition that a seller may be better off by starting with a higher price and then decreasing it, as the customers feel like they are getting bargains on items that are ordinarily more expensive. For linear demand models, we also provide a detailed characterization of the near-optimal markdown policy along with an efficient way of computing it. We then consider a more challenging dynamic pricing and learning problem, where the demand model parameters are apriori unknown, and the seller needs to learn them online from the customers’ responses to the offered prices while simultaneously optimizing revenue. The objective is to minimize regret, i.e., the 𝑇-round revenue loss compared to a clairvoyant optimal policy. This task essentially amounts to learning a non-stationary optimal policy in a time-variant Markov Decision Process (MDP). For linear demand models, we provide an efficient learning algorithm with an optimal 𝑂(√𝑇 ) regret upper bound.more » « lessFree, publicly-accessible full text available July 11, 2025
-
Free, publicly-accessible full text available July 8, 2025
-
Free, publicly-accessible full text available July 8, 2025
-
The assignment game, introduced by Shapley and Shubik [1971], is a classic model for two-sided matching markets between buyers and sellers. In the original assignment game, it is assumed that payments lead to transferable utility and that buyers have unit-demand valuations for the items being sold. There has since been substantial work studying various extensions of the assignment game. The first main area of extension is to imperfectly transferable utility, which is when frictions, taxes, or fees impede the transfer of money between agents. The second is with more complex valuation functions, in particular gross substitutes valuations, which describe substitutable goods. Multiple efficient algorithms have been proposed for computing a competitive equilibrium, the standard solution concept in assignment games, in each of these two settings. However, these lines of work have been mostly independent, with no algorithmic results combining the two. Our main result is an efficient algorithm for computing competitive equilibria in a setting encompassing both those generalizations. We assume that sellers have multiple copies of each items. A buyer $i$'s quasi-linear utility is given by their gross substitute valuation for the bundle $S$ of items they are assigned to, minus the sum of the payments $q_{ij}(p_j)$ for each item $j \in S$, where $p_j$ is the price of item $j$ and $q_{ij}$ is piecewise linear, strictly increasing. Our algorithm combines procedures for matroid intersection problems with augmenting forest techniques from matching theory. We also show that in a mild generalization of our model without quasilinear utilities, computing a competitive equilibrium is NP-hard.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Free, publicly-accessible full text available July 1, 2025
-
We study an online allocation problem with sequentially arriving items and adversarially chosen agent values, with the goal of balancing fairness and efficiency. Our goal is to study the performance of algorithms that achieve strong guarantees under other input models such as stochastic inputs, in order to achieve robust guarantees against a variety of inputs. To that end, we study the PACE (Pacing According to Current Estimated utility) algorithm, an existing algorithm designed for stochastic input. We show that in the equal-budgets case, PACE is equivalent to an integral greedy algorithm. We go on to show that with natural restrictions on the adversarial input model, both the greedy allocation and PACE have asymptotically bounded multiplicative envy as well as competitive ratio for Nash welfare, with the multiplicative factors either constant or with optimal order dependence on the number of agents. This completes a best-of-many-worlds guarantee for PACE, since past work showed that PACE achieves guarantees for stationary and stochastic-but-non-stationary input models.
Free, publicly-accessible full text available March 25, 2025 -
In this work, we introduce an alternative model for the design and analysis of strategyproof mechanisms that is motivated by the recent surge of work in “learning-augmented algorithms.” Aiming to complement the traditional worst-case analysis approach in computer science, this line of work has focused on the design and analysis of algorithms that are enhanced with machine-learned predictions. The algorithms can use the predictions as a guide to inform their decisions, aiming to achieve much stronger performance guarantees when these predictions are accurate (consistency), while also maintaining near-optimal worst-case guarantees, even if these predictions are inaccurate (robustness). We initiate the design and analysis of strategyproof mechanisms that are augmented with predictions regarding the private information of the participating agents. To exhibit the important benefits of this approach, we revisit the canonical problem of facility location with strategic agents in the two-dimensional Euclidean space. We study both the egalitarian and utilitarian social cost functions, and we propose new strategyproof mechanisms that leverage predictions to guarantee an optimal trade-off between consistency and robustness. Furthermore, we also prove parameterized approximation results as a function of the prediction error, showing that our mechanisms perform well, even when the predictions are not fully accurate.
Funding: The work of E. Balkanski was supported in part by the National Science Foundation [Grants CCF-2210501 and IIS-2147361]. The work of V. Gkatzelis and X. Tan was supported in part by the National Science Foundation [Grant CCF-2210502] and [CAREER Award CCF-2047907].