skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2147467

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Antimicrobial peptides (AMPs) play a fundamental role in the innate defense against microbial pathogens, as well as other immune and non-immune functions. Their role in amphibian skin defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd) is exemplified by experiments in which depletion of host’s stored AMPs increases mortality from infection. Yet, the question remains whether there are generalizable patterns of negative or positive correlations between stored AMP defenses and the probability of infection or infection intensity across populations and species. This study aims to expand on prior field studies of AMP quantities and compositions by correlating stored defenses with an estimated risk of Bd exposure (prevalence and mean infection intensity in each survey) in five locations across the United States and a total of three species. In all locations, known AMPs correlated with the ability of recovered secretions to inhibit Bd in vitro. We found that stored AMP defenses were generally unrelated to Bd infection except in one location where the relative intensity of known AMPs was lower in secretions from infected frogs. In all other locations, known AMP relative intensities were higher in infected frogs. Stored peptide quantity was either positively or negatively correlated with Bd exposure risk. Thus, future experiments coupled with organismal modeling can elucidate whether Bd infection affects secretion/synthesis and will provide insight into how to interpret amphibian ecoimmunology studies of AMPs. We also demonstrate that future AMP isolating and sequencing studies can focus efforts by correlating mass spectrometry peaks to inhibitory capacity using linear decomposition modeling. 
    more » « less
  2. The chytrid fungus, Batrachochytrium dendrobatidis (Bd), infects amphibian skin, causing chytridiomycosis, which is a contributing cause of worldwide declines and extinctions of amphibians. Relatively little is known about the roles of amphibian skin-resident immune cells, such as macrophages, in these antifungal defenses. Across vertebrates, macrophage differentiation is controlled through the activation of colony-stimulating factor-1 (CSF1) receptor by CSF1 and interleukin-34 (IL34) cytokines. While the precise roles of these respective cytokines in macrophage development remain to be fully explored, our ongoing studies indicate that frog (Xenopus laevis) macrophages differentiated by recombinant forms of CSF1 and IL34 are functionally distinct. Accordingly, we explored the roles of X. laevis CSF1- and IL34-macrophages in anti-Bd defenses. Enriching cutaneous IL34-macrophages, but not CSF1-macrophages, resulted in significant anti-Bd protection. In vitro analysis of frog macrophage-Bd interactions indicated that both macrophage subsets phagocytosed Bd. However, IL34-macrophages cocultured with Bd exhibited greater pro-inflammatory gene expression, whereas CSF1-macrophages cocultured with Bd showed greater immunosuppressive gene expression profiles. Concurrently, Bd-cocultured with CSF1-macrophages, but not IL34-macrophages, possessed elevated expression of genes associated with immune evasion. This work marks a step forward in our understanding of the roles of frog macrophage subsets in antifungal defenses. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Most hosts contain few parasites, whereas few hosts contain many. This pattern, known as aggregation, is well-documented in macroparasites where parasite intensity distribution among hosts affects host–parasite dynamics. Infection intensity also drives fungal disease dynamics, but we lack a basic understanding of host–fungal aggregation patterns, how they compare with macroparasites and if they reflect biological processes. To begin addressing these gaps, we characterized aggregation of the fungal pathogenBatrachochytrium dendrobatidis(Bd) in amphibian hosts. Utilizing the slope of Taylor’s Power law, we found Bd intensity distributions were more aggregated than many macroparasites, conforming closely to lognormal distributions. We observed that Bd aggregation patterns are strongly correlated with known biological processes operating in amphibian populations, such as epizoological phase (i.e. invasion, post-invasion and enzootic), and intensity-dependent disease mortality. Using intensity-dependent mathematical models, we found evidence of evolution of host resistance based on aggregation shifts in systems persisting with Bd following disease-induced declines. Our results show that Bd aggregation is highly conserved across disparate systems and contains signatures of potential biological processes of amphibian–Bd systems. Our work can inform future modelling approaches and be extended to other fungal pathogens to elucidate host–fungal interactions and unite host–fungal dynamics under a common theoretical framework. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. Some of the amphibian populations in Panama are demonstrating slow recovery decades after severe declines caused by the invasion of the fungal pathogenBatrachochytrium dendrobatidis(Bd). However, new species remain to be described and assessed for the mechanisms of disease resilience. We identified seven skin defense peptides from a presumably novel leopard frog species in the Tabasará range, at Buäbti (Llano Tugrí), Ngäbe-Buglé Comarca, and Santa Fe, Veraguas, Panama, herein called the Ngäbe-Buglé leopard frog. Two of the peptides were previously known: brevinin-1BLb fromRana (Lithobates) blairiand a previously hypothesized “ancestral” peptide, ranatuerin-2BPa. We hypothesized that the peptides are active againstBdand shape the microbiome such that the skin bacterial communities are more similar to those of other leopard frogs than of co-occurring host species. Natural mixtures of the collected skin peptides showed a minimum inhibitory concentration againstBdof 100 μg/ml, which was similar to that of other leopard frogs that have been tested. All sampled individuals hosted high intensity of infection withBd. We sampled nine other amphibian species in nearby habitats and found lower prevalence and intensities ofBdinfection. In addition to the pathogen load, the skin microbiomes were examined using 16S rRNA gene targeted amplicon sequencing. When compared to nine co-occurring amphibians, the Ngäbe-Buglé leopard frog had similar skin bacterial richness and anti-Bdfunction, but the skin microbiome structure differed significantly among species. The community composition of the bacterial skin communities was strongly associated with theBdinfection load. In contrast, the skin microbiome composition of the Ngäbe-Buglé leopard frog was similar to that of five North American leopard frog populations and the sympatric and congenericRana (Lithobates) warszewitschii, with 29 of the 46 core bacteria all demonstrating anti-Bdactivity in culture. Because of the highBdinfection load and prevalence in the Ngäbe-Buglé leopard frog, we suggest that treatment to reduce theBdload in this species might reduce the chytridiomycosis risk in the co-occurring amphibian community, but could potentially disrupt the evolution of skin defenses that provide a mechanism for disease resilience in this species. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025
  5. Western palearctic salamander susceptibility to the skin disease caused by the amphibian chytrid fungusBatrachochytrium salamandrivorans(Bsal) was recognized in 2014, eliciting concerns for a potential novel wave of amphibian declines following theB. dendrobatidis(Bd) chytridiomycosis global pandemic. Although Bsal had not been detected in North America, initial experimental trials supported the heightened susceptibility of caudate amphibians to Bsal chytridiomycosis, recognizing the critical threat this pathogen poses to the North American salamander biodiversity hotspot. Here, we take stock of 10 years of research, collaboration, engagement, and outreach by the North American Bsal Task Force. We summarize main knowledge and conservation actions to both forestall and respond to Bsal invasion into North America. We address the questions: what have we learned; what are current challenges; and are we ready for a more effective reaction to Bsal’s eventual detection? We expect that the many contributions to preemptive planning accrued over the past decade will pay dividends in amphibian conservation effectiveness and can inform future responses to other novel wildlife diseases and extreme threats. 
    more » « less
  6. A comparative study of collagen IV basement membranes in shark, hagfish, frog, and salamander. 
    more » « less
  7. Abstract Hellbenders ( Cryptobranchus alleganiensis ) are large, aquatic salamanders from the eastern United States. Both subspecies, eastern and Ozark hellbenders, have experienced declines resulting in federal listing of Ozark hellbenders. The globally distributed chytrid fungus, Batrachochytrium dendrobatidis (Bd) has been detected in both subspecies, and Batrachochytrium salamandrivorans ( Bsal ) poses a new threat if introduced into North America. Ozark hellbenders also suffer a high prevalence of toe lesions of unknown etiology, with changes in host immunocompetence hypothesized to contribute. Antimicrobial peptides (AMPs) secreted from dermal granular glands may play a role in hellbender health. We collected skin secretions from free-ranging hellbenders and enriched them for small cationic peptides used for growth inhibition assays against Bd and Bsal . Generalized linear mixed models revealed the presence of active toe lesions as the strongest and only significant predictor of decreased Bd inhibition by skin peptides. We also found skin secretions were more inhibitory of Bsal than Bd . MALDI-TOF mass spectrometry revealed candidate peptides responsible for anti-chytrid activity. Results support the hypothesis that hellbender skin secretions are important for innate immunity against chytrid pathogens, and decreased production or release of skin peptides may be linked to other sub-lethal effects of disease associated with toe lesions. 
    more » « less
  8. As a class of vertebrates, amphibians, are at greater risk for declines or extinctions than any other vertebrate group, including birds and mammals. There are many threats, including habitat destruction, invasive species, overuse by humans, toxic chemicals and emerging diseases. Climate change which brings unpredictable temperature changes and rainfall constitutes an additional threat. Survival of amphibians depends on immune defences functioning well under these combined threats. Here, we review the current state of knowledge of how amphibians respond to some natural stressors, including heat and desiccation stress, and the limited studies of the immune defences under these stressful conditions. In general, the current studies suggest that desiccation and heat stress can activate the hypothalamus pituitary–interrenal axis, with possible suppression of some innate and lymphocyte-mediated responses. Elevated temperatures can alter microbial communities in amphibian skin and gut, resulting in possible dysbiosis that fosters reduced resistance to pathogens. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’. 
    more » « less