skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Amphibian (Xenopus laevis) Macrophage Subsets Vary in Their Responses to the Chytrid Fungus Batrachochytrium dendrobatidis
The chytrid fungus, Batrachochytrium dendrobatidis (Bd), infects amphibian skin, causing chytridiomycosis, which is a contributing cause of worldwide declines and extinctions of amphibians. Relatively little is known about the roles of amphibian skin-resident immune cells, such as macrophages, in these antifungal defenses. Across vertebrates, macrophage differentiation is controlled through the activation of colony-stimulating factor-1 (CSF1) receptor by CSF1 and interleukin-34 (IL34) cytokines. While the precise roles of these respective cytokines in macrophage development remain to be fully explored, our ongoing studies indicate that frog (Xenopus laevis) macrophages differentiated by recombinant forms of CSF1 and IL34 are functionally distinct. Accordingly, we explored the roles of X. laevis CSF1- and IL34-macrophages in anti-Bd defenses. Enriching cutaneous IL34-macrophages, but not CSF1-macrophages, resulted in significant anti-Bd protection. In vitro analysis of frog macrophage-Bd interactions indicated that both macrophage subsets phagocytosed Bd. However, IL34-macrophages cocultured with Bd exhibited greater pro-inflammatory gene expression, whereas CSF1-macrophages cocultured with Bd showed greater immunosuppressive gene expression profiles. Concurrently, Bd-cocultured with CSF1-macrophages, but not IL34-macrophages, possessed elevated expression of genes associated with immune evasion. This work marks a step forward in our understanding of the roles of frog macrophage subsets in antifungal defenses.  more » « less
Award ID(s):
2147467
PAR ID:
10628261
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI, Basel, Switzerland.
Date Published:
Journal Name:
Journal of Fungi
Volume:
11
Issue:
4
ISSN:
2309-608X
Page Range / eLocation ID:
311
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Global amphibian declines are largely driven by deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). In the time since these disease outbreaks were first discovered, much has been learned about the roles of amphibian skin-produced antimicrobial components and skin microbiomes in controlling Bd. Yet almost nothing is known about the roles of skin-resident immune cells in anti-Bd defenses. Notably, mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like the skin. Thus, they are critical to immune recognition of pathogens and to orchestrating the ensuing immune responses. Accordingly, we investigated the roles of Xenopus laevis frog mast cells during Bd infections. Our findings indicate that enrichment of X. laevis skin mast cells confers significant anti-Bd protection and ameliorates the inflammation-associated skin damage caused by Bd infection. Moreover, enriching X. laevis mast cells promotes greater mucin content within cutaneous mucus glands and protects frogs from Bd-mediated changes to their skin microbiomes. Together, this work underlines the importance of amphibian skin-resident immune cells in anti-Bd defenses and introduces a novel approach for investigating amphibian host-chytrid pathogen interactions. 
    more » « less
  2. Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus,Batrachochytrium dendrobatidis(Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controllingBd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bddefenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles ofXenopus laevisfrog mast cells duringBdinfections. Our findings indicate that enrichment ofX. laevisskin mast cells confers anti-Bdprotection and ameliorates the inflammation-associated skin damage caused byBdinfection. This includes a significant reduction in infiltration ofBd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventingBd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that theX. laevisIL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bddefenses and illuminates a novel avenue for investigating amphibian host–chytrid pathogen interactions. 
    more » « less
  3. The amphibian declines are compounded by emerging pathogens that often preferentially target distinct amphibian developmental stages. While amphibian immune responses remain relatively unexplored, macrophage (Mφ)-lineage cells are believed to be important to both amphibian host defenses and to their pathogen infection strategies. As such, a greater understanding of tadpole and adult amphibian Mφ functionality is warranted. Mφ biology is interdependent of interleukin-34 (IL-34) and colony-stimulating factor-1 (CSF-1) cytokines and we previously showed that CSF-1- and IL-34-derived Mφs of the Xenopus laevis frog are morphologically, transcriptionally, and functionally distinct. Presently, we directly compared the cytology and transcriptomes of X. laevis tadpole and frog CSF-1- and IL-34-Mφs. Our results indicate that tadpole and frog CSF-1-Mφs possess greater non-specific esterase activity, typically associated with Mφ-lineage cells. By contrast, both tadpole and frog IL-34-Mφs have greater specific esterase activity, which is typically attributed to granulocyte-lineage cells. Our comparisons of tadpole CSF-1-Mφ transcriptomes with those of tadpole IL-34-Mφs indicate that the two tadpole populations possess significantly different transcriptional profiles of immune and non-immune genes. The frog CSF-1-Mφ gene expression profiles are likewise significantly disparate from those of frog IL-34-Mφs. Compared to their respective tadpole Mφ subtypes, frog CSF-1- and IL-34-Mφs exhibited greater expression of genes associated with antigen presentation. Conversely, compared to their frog Mφ counterparts, tadpole CSF-1- and IL-34-Mφs possessed greater levels of select Fc-like receptor genes. Presumably, these cytological and transcriptional differences manifest in distinct biological roles for these respective tadpole and frog Mφ subtypes. 
    more » « less
  4. Macrophage-lineage cells are indispensable to immunity and physiology of all vertebrates. Amongst these, amphibians represent a key stage in vertebrate evolution and are facing decimating population declines and extinctions, in large part due to emerging infectious agents. While recent studies indicate that macrophages and related innate immune cells are critically involved during these infections, much remains unknown regarding the ontogeny and functional differentiation of these cell types in amphibians. Accordingly, in this review we coalesce what has been established to date about amphibian blood cell development (hematopoiesis), the development of key amphibian innate immune cells (myelopoiesis) and the differentiation of amphibian macrophage subsets (monopoiesis). We explore the current understanding of designated sites of larval and adult hematopoiesis across distinct amphibian species and consider what mechanisms may lend to these species-specific adaptations. We discern the identified molecular mechanisms governing the functional differentiation of disparate amphibian (chiefly Xenopus laevis) macrophage subsets and describe what is known about the roles of these subsets during amphibian infections with intracellular pathogens. Macrophage lineage cells are at the heart of so many vertebrate physiological processes. Thus, garnering greater understanding of the mechanisms responsible for the ontogeny and functionality of these cells in amphibians will lend to a more comprehensive view of vertebrate evolution. 
    more » « less
  5. Abstract Infectious disease systems frequently exhibit strong seasonal patterns, yet the mechanisms that underpin intra‐annual cycles are unclear, particularly in tropical regions. We hypothesized that host immune function fluctuates seasonally, contributing to oscillations in infection patterns in a tropical disease system. To test this hypothesis, we investigated a key host defense of amphibians against a lethal fungal pathogen,Batrachochytrium dendrobatidis(Bd). We integrated two field experiments in which we perturbed amphibian skin secretions, a critical host immune mechanism, in Panamanian rocket frogs (Colostethus panamansis). We found that this immunosuppressive technique of reducing skin secretions in wild frog populations increasedBdprevalence and infection intensity, indicating that this immune defense contributes to resistance toBdin wild frog populations. We also found that the chemical composition and anti‐Bdeffectiveness of frog skin secretions varied across seasons, with greater pathogen inhibition during the dry season relative to the wet season. These results suggest that the effectiveness of this host defense mechanism shifts across seasons, likely contributing to seasonal infection patterns in a lethal disease system. More broadly, our findings indicate that host immune defenses can fluctuate across seasons, even in tropical regions where temperatures are relatively stable, which advances our understanding of intra‐annual cycles of infectious disease dynamics. 
    more » « less